{"title":"开放量子系统主方程的不连续伽辽金格式","authors":"José A. Morales Escalante","doi":"10.1016/j.cpc.2025.109778","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a numerical analysis of a Discontinuous Galerkin (DG) method for a transformed master equation modeling an open quantum system: a quantum sub-system interacting with a noisy environment. It is shown that the presented transformed master equation has a reduced computational cost in comparison to a Wigner-Fokker-Planck model of the same system for the general case of non-harmonic potentials via DG schemes. Specifics of a Discontinuous Galerkin (DG) numerical scheme adequate for the system of convection-diffusion equations obtained for our Lindblad master equation in position basis are presented. This lets us solve computationally the transformed system of interest modeling our open quantum system problem. The benchmark case of a harmonic potential is then presented, for which the numerical results are compared against the analytical steady-state solution of this problem. Two non-harmonic cases are then presented: the linear and quartic potentials are modeled via our DG framework, for which we show our numerical results.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"316 ","pages":"Article 109778"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discontinuous Galerkin schemes for master equations modeling open quantum systems\",\"authors\":\"José A. Morales Escalante\",\"doi\":\"10.1016/j.cpc.2025.109778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents a numerical analysis of a Discontinuous Galerkin (DG) method for a transformed master equation modeling an open quantum system: a quantum sub-system interacting with a noisy environment. It is shown that the presented transformed master equation has a reduced computational cost in comparison to a Wigner-Fokker-Planck model of the same system for the general case of non-harmonic potentials via DG schemes. Specifics of a Discontinuous Galerkin (DG) numerical scheme adequate for the system of convection-diffusion equations obtained for our Lindblad master equation in position basis are presented. This lets us solve computationally the transformed system of interest modeling our open quantum system problem. The benchmark case of a harmonic potential is then presented, for which the numerical results are compared against the analytical steady-state solution of this problem. Two non-harmonic cases are then presented: the linear and quartic potentials are modeled via our DG framework, for which we show our numerical results.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"316 \",\"pages\":\"Article 109778\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465525002802\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525002802","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Discontinuous Galerkin schemes for master equations modeling open quantum systems
This work presents a numerical analysis of a Discontinuous Galerkin (DG) method for a transformed master equation modeling an open quantum system: a quantum sub-system interacting with a noisy environment. It is shown that the presented transformed master equation has a reduced computational cost in comparison to a Wigner-Fokker-Planck model of the same system for the general case of non-harmonic potentials via DG schemes. Specifics of a Discontinuous Galerkin (DG) numerical scheme adequate for the system of convection-diffusion equations obtained for our Lindblad master equation in position basis are presented. This lets us solve computationally the transformed system of interest modeling our open quantum system problem. The benchmark case of a harmonic potential is then presented, for which the numerical results are compared against the analytical steady-state solution of this problem. Two non-harmonic cases are then presented: the linear and quartic potentials are modeled via our DG framework, for which we show our numerical results.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.