{"title":"基于双孔径自适应方位模糊抑制和自适应QR分解的FMCW雷达稀疏运动阵列成像方法","authors":"Yanwen Han, Xiaopeng Yan, Jiawei Wang, Sheng Zheng, Hongrui Yu, Jian Dai","doi":"10.1016/j.dt.2025.03.019","DOIUrl":null,"url":null,"abstract":"<div><div>Range-azimuth imaging of ground targets via frequency-modulated continuous wave (FMCW) radar is crucial for effective target detection. However, when the pitch of the moving array constructed during motion exceeds the physical array aperture, azimuth ambiguity occurs, making range-azimuth imaging on a moving platform challenging. To address this issue, we theoretically analyze azimuth ambiguity generation in sparse motion arrays and propose a dual-aperture adaptive processing (DAAP) method for suppressing azimuth ambiguity. This method combines spatial multiple-input multiple-output (MIMO) arrays with sparse motion arrays to achieve high-resolution range-azimuth imaging. In addition, an adaptive QR decomposition denoising method for sparse array signals based on iterative low-rank matrix approximation (LRMA) and regularized QR is proposed to preprocess sparse motion array signals. Simulations and experiments show that on a two-transmitter-four-receiver array, the signal-to-noise ratio (SNR) of the sparse motion array signal after noise suppression via adaptive QR decomposition can exceed 0 dB, and the azimuth ambiguity signal ratio (AASR) can be reduced to below −20 dB.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"50 ","pages":"Pages 254-271"},"PeriodicalIF":5.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sparse moving array imaging approach for FMCW radar with dual-aperture adaptive azimuth ambiguity suppression and adaptive QR decomposition\",\"authors\":\"Yanwen Han, Xiaopeng Yan, Jiawei Wang, Sheng Zheng, Hongrui Yu, Jian Dai\",\"doi\":\"10.1016/j.dt.2025.03.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Range-azimuth imaging of ground targets via frequency-modulated continuous wave (FMCW) radar is crucial for effective target detection. However, when the pitch of the moving array constructed during motion exceeds the physical array aperture, azimuth ambiguity occurs, making range-azimuth imaging on a moving platform challenging. To address this issue, we theoretically analyze azimuth ambiguity generation in sparse motion arrays and propose a dual-aperture adaptive processing (DAAP) method for suppressing azimuth ambiguity. This method combines spatial multiple-input multiple-output (MIMO) arrays with sparse motion arrays to achieve high-resolution range-azimuth imaging. In addition, an adaptive QR decomposition denoising method for sparse array signals based on iterative low-rank matrix approximation (LRMA) and regularized QR is proposed to preprocess sparse motion array signals. Simulations and experiments show that on a two-transmitter-four-receiver array, the signal-to-noise ratio (SNR) of the sparse motion array signal after noise suppression via adaptive QR decomposition can exceed 0 dB, and the azimuth ambiguity signal ratio (AASR) can be reduced to below −20 dB.</div></div>\",\"PeriodicalId\":58209,\"journal\":{\"name\":\"Defence Technology(防务技术)\",\"volume\":\"50 \",\"pages\":\"Pages 254-271\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Technology(防务技术)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214914725001035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914725001035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A sparse moving array imaging approach for FMCW radar with dual-aperture adaptive azimuth ambiguity suppression and adaptive QR decomposition
Range-azimuth imaging of ground targets via frequency-modulated continuous wave (FMCW) radar is crucial for effective target detection. However, when the pitch of the moving array constructed during motion exceeds the physical array aperture, azimuth ambiguity occurs, making range-azimuth imaging on a moving platform challenging. To address this issue, we theoretically analyze azimuth ambiguity generation in sparse motion arrays and propose a dual-aperture adaptive processing (DAAP) method for suppressing azimuth ambiguity. This method combines spatial multiple-input multiple-output (MIMO) arrays with sparse motion arrays to achieve high-resolution range-azimuth imaging. In addition, an adaptive QR decomposition denoising method for sparse array signals based on iterative low-rank matrix approximation (LRMA) and regularized QR is proposed to preprocess sparse motion array signals. Simulations and experiments show that on a two-transmitter-four-receiver array, the signal-to-noise ratio (SNR) of the sparse motion array signal after noise suppression via adaptive QR decomposition can exceed 0 dB, and the azimuth ambiguity signal ratio (AASR) can be reduced to below −20 dB.
Defence Technology(防务技术)Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍:
Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.