(F1,F)无4-环、5-环和无外三角7-环的平面图的分割

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Xian’an Jin, Tianlong Ma, Weiling Yang, Gang Zhang
{"title":"(F1,F)无4-环、5-环和无外三角7-环的平面图的分割","authors":"Xian’an Jin,&nbsp;Tianlong Ma,&nbsp;Weiling Yang,&nbsp;Gang Zhang","doi":"10.1016/j.dam.2025.08.017","DOIUrl":null,"url":null,"abstract":"<div><div>An <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></mrow></math></span>-partition of a graph <span><math><mi>G</mi></math></span> is a partition of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> into two sets <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> such that <span><math><mrow><mi>G</mi><mrow><mo>[</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo></mrow></mrow></math></span> is a forest of maximum degree at most <span><math><mi>k</mi></math></span> and <span><math><mrow><mi>G</mi><mrow><mo>[</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></mrow></mrow></math></span> is just a forest. A plane graph is a planar graph <span><math><mi>G</mi></math></span> together with an embedding of <span><math><mi>G</mi></math></span> into the Euclidean plane. A cycle <span><math><mi>C</mi></math></span> of a plane graph is ext-triangular if it is adjacent to a triangle <span><math><mi>T</mi></math></span> such that the interiors of <span><math><mi>C</mi></math></span> and <span><math><mi>T</mi></math></span> have no intersection. Recently, Liu and Yu (2020) proposed a problem whether planar graphs without cycles of length from 4 to 7 are <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></mrow></math></span>-partitionable. In this paper, we prove that plane graphs without 4- and 5-cycles and without ext-triangular 7-cycles are <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></mrow></math></span>-partitionable. As a consequence, planar graphs without cycles of length 4, 5 or <span><math><mi>l</mi></math></span> for any <span><math><mrow><mi>l</mi><mo>∈</mo><mrow><mo>{</mo><mn>7</mn><mo>,</mo><mn>8</mn><mo>}</mo></mrow></mrow></math></span> are <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></mrow></math></span>-partitionable.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 7-23"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(F1,F)-partition of plane graphs without 4- and 5-cycles and without ext-triangular 7-cycles\",\"authors\":\"Xian’an Jin,&nbsp;Tianlong Ma,&nbsp;Weiling Yang,&nbsp;Gang Zhang\",\"doi\":\"10.1016/j.dam.2025.08.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></mrow></math></span>-partition of a graph <span><math><mi>G</mi></math></span> is a partition of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> into two sets <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> such that <span><math><mrow><mi>G</mi><mrow><mo>[</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo></mrow></mrow></math></span> is a forest of maximum degree at most <span><math><mi>k</mi></math></span> and <span><math><mrow><mi>G</mi><mrow><mo>[</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></mrow></mrow></math></span> is just a forest. A plane graph is a planar graph <span><math><mi>G</mi></math></span> together with an embedding of <span><math><mi>G</mi></math></span> into the Euclidean plane. A cycle <span><math><mi>C</mi></math></span> of a plane graph is ext-triangular if it is adjacent to a triangle <span><math><mi>T</mi></math></span> such that the interiors of <span><math><mi>C</mi></math></span> and <span><math><mi>T</mi></math></span> have no intersection. Recently, Liu and Yu (2020) proposed a problem whether planar graphs without cycles of length from 4 to 7 are <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></mrow></math></span>-partitionable. In this paper, we prove that plane graphs without 4- and 5-cycles and without ext-triangular 7-cycles are <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></mrow></math></span>-partitionable. As a consequence, planar graphs without cycles of length 4, 5 or <span><math><mi>l</mi></math></span> for any <span><math><mrow><mi>l</mi><mo>∈</mo><mrow><mo>{</mo><mn>7</mn><mo>,</mo><mn>8</mn><mo>}</mo></mrow></mrow></math></span> are <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></mrow></math></span>-partitionable.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"379 \",\"pages\":\"Pages 7-23\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004585\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004585","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图G的(Fk,F)划分是将V(G)划分为两个集合V1和V2,使得G[V1]是最大度为k的森林,而G[V2]就是森林。平面图是一个平面图G连同G在欧几里得平面上的嵌入。如果一个平面图形的环C与一个三角形T相邻,使得C和T的内部没有交集,那么它就是外三角形。最近,Liu and Yu(2020)提出了一个不包含长度为4 ~ 7的环的平面图是否(F0,F)可分的问题。本文证明了无4环、5环和无下三角7环的平面图形是(F1,F)可分的。因此,对于任意l∈{7,8},不存在长度为4,5或l的环的平面图是(F1,F)可分的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
(F1,F)-partition of plane graphs without 4- and 5-cycles and without ext-triangular 7-cycles
An (Fk,F)-partition of a graph G is a partition of V(G) into two sets V1 and V2 such that G[V1] is a forest of maximum degree at most k and G[V2] is just a forest. A plane graph is a planar graph G together with an embedding of G into the Euclidean plane. A cycle C of a plane graph is ext-triangular if it is adjacent to a triangle T such that the interiors of C and T have no intersection. Recently, Liu and Yu (2020) proposed a problem whether planar graphs without cycles of length from 4 to 7 are (F0,F)-partitionable. In this paper, we prove that plane graphs without 4- and 5-cycles and without ext-triangular 7-cycles are (F1,F)-partitionable. As a consequence, planar graphs without cycles of length 4, 5 or l for any l{7,8} are (F1,F)-partitionable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信