非线性时滞-积分-微分-代数方程的龙格-库塔方法稳定性分析

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Gehao Wang, Yuexin Yu
{"title":"非线性时滞-积分-微分-代数方程的龙格-库塔方法稳定性分析","authors":"Gehao Wang,&nbsp;Yuexin Yu","doi":"10.1016/j.amc.2025.129675","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is devoted to examining the stability of Runge–Kutta methods for solving nonlinear delay-integro-differential-algebraic equations (DIDAEs). The stability of exact solution for nonlinear DIDAEs is obtained by using the Halanay’s inequality. Hybrid numerical schemes combining Runge–Kutta methods and compound quadrature rules are analyzed for nonlinear DIDAEs. Criteria for ensuring the global and asymptotic stability of the proposed schemes are established. Several numerical examples are provided to validate the theoretical findings.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"510 ","pages":"Article 129675"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis of Runge–Kutta methods for nonlinear delay-integro-differential-algebraic equations\",\"authors\":\"Gehao Wang,&nbsp;Yuexin Yu\",\"doi\":\"10.1016/j.amc.2025.129675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is devoted to examining the stability of Runge–Kutta methods for solving nonlinear delay-integro-differential-algebraic equations (DIDAEs). The stability of exact solution for nonlinear DIDAEs is obtained by using the Halanay’s inequality. Hybrid numerical schemes combining Runge–Kutta methods and compound quadrature rules are analyzed for nonlinear DIDAEs. Criteria for ensuring the global and asymptotic stability of the proposed schemes are established. Several numerical examples are provided to validate the theoretical findings.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"510 \",\"pages\":\"Article 129675\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325004011\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325004011","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了求解非线性时滞-积分-微分-代数方程的龙格-库塔方法的稳定性。利用Halanay不等式,得到了非线性DIDAEs精确解的稳定性。分析了非线性DIDAEs的龙格-库塔法和复合正交规则相结合的混合数值格式。建立了保证所提方案的全局稳定性和渐近稳定性的准则。给出了几个数值算例来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis of Runge–Kutta methods for nonlinear delay-integro-differential-algebraic equations
This paper is devoted to examining the stability of Runge–Kutta methods for solving nonlinear delay-integro-differential-algebraic equations (DIDAEs). The stability of exact solution for nonlinear DIDAEs is obtained by using the Halanay’s inequality. Hybrid numerical schemes combining Runge–Kutta methods and compound quadrature rules are analyzed for nonlinear DIDAEs. Criteria for ensuring the global and asymptotic stability of the proposed schemes are established. Several numerical examples are provided to validate the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信