{"title":"半线上周期Jacobi算子的色散衰减估计","authors":"Amir Sagiv , Remy Kassem , Michael I. Weinstein","doi":"10.1016/j.jmaa.2025.129945","DOIUrl":null,"url":null,"abstract":"<div><div>We establish dispersive time-decay estimates for periodic Jacobi operators on the discrete half-line, <span><math><mi>N</mi></math></span>. Specifically, we prove <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> decay in the weighted <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> norm for all such operators. For the global <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>→</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> decay estimate, we show that <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span> decay holds under a nondegeneracy condition on the discriminant. Alternatively, for any even period <span><math><mi>q</mi><mo>≥</mo><mn>2</mn></math></span>, if the continuous spectrum consists of exactly <em>q</em> disjoint intervals (bands), we obtain a <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span> decay rate without any further assumptions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 1","pages":"Article 129945"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dispersive decay estimates for periodic Jacobi operators on the half-line\",\"authors\":\"Amir Sagiv , Remy Kassem , Michael I. Weinstein\",\"doi\":\"10.1016/j.jmaa.2025.129945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish dispersive time-decay estimates for periodic Jacobi operators on the discrete half-line, <span><math><mi>N</mi></math></span>. Specifically, we prove <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> decay in the weighted <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> norm for all such operators. For the global <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>→</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> decay estimate, we show that <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></math></span> decay holds under a nondegeneracy condition on the discriminant. Alternatively, for any even period <span><math><mi>q</mi><mo>≥</mo><mn>2</mn></math></span>, if the continuous spectrum consists of exactly <em>q</em> disjoint intervals (bands), we obtain a <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span> decay rate without any further assumptions.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"553 1\",\"pages\":\"Article 129945\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25007267\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25007267","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Dispersive decay estimates for periodic Jacobi operators on the half-line
We establish dispersive time-decay estimates for periodic Jacobi operators on the discrete half-line, . Specifically, we prove decay in the weighted norm for all such operators. For the global decay estimate, we show that decay holds under a nondegeneracy condition on the discriminant. Alternatively, for any even period , if the continuous spectrum consists of exactly q disjoint intervals (bands), we obtain a decay rate without any further assumptions.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.