基础H2O2浓度在植物ROS胁迫信号波形中的作用

IF 2.9 Q1 AGRICULTURE, MULTIDISCIPLINARY
Thomas K. Porter, Gabriel Sánchez-Velázquez and Michael S. Strano*, 
{"title":"基础H2O2浓度在植物ROS胁迫信号波形中的作用","authors":"Thomas K. Porter,&nbsp;Gabriel Sánchez-Velázquez and Michael S. Strano*,&nbsp;","doi":"10.1021/acsagscitech.5c00206","DOIUrl":null,"url":null,"abstract":"<p >In response to stress, living plants propagate a chemical wave composed of H<sub>2</sub>O<sub>2</sub> through their tissues. Advances in nanosensors capable of measuring H<sub>2</sub>O<sub>2</sub> within the living plant in real time have informed a quantitative theory to describe the spatiotemporal profile of its concentration─labeled a signaling <i>waveform</i>. A heretofore unaddressed aspect of the theory is the role of the existing basal H<sub>2</sub>O<sub>2</sub> concentration level within the plant before and after stress wave propagation, potentially informing mechanisms of stress priming─or state changes associated with prior, low magnitude levels of stress that condition the resulting waveform. Herein, we develop a mathematical description of wave propagation within an existing basal level of H<sub>2</sub>O<sub>2</sub>. We show that the shape and intensity of the waveform can be mathematically decoupled from the basal H<sub>2</sub>O<sub>2</sub> concentration. This opens the possibility that the equilibrium basal concentration can operate as a distinct, orthogonal signaling channel, separate from the acute waveform following a discrete stress event. The mathematics developed herein may find utility in a more detailed description of mechanisms such as stress priming. More broadly, the results will aid in extending waveform analysis across diverse plant species and environmental conditions.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"5 7","pages":"1434–1441"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Basal H2O2 Concentration in ROS Stress Signaling Waveforms In Planta\",\"authors\":\"Thomas K. Porter,&nbsp;Gabriel Sánchez-Velázquez and Michael S. Strano*,&nbsp;\",\"doi\":\"10.1021/acsagscitech.5c00206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In response to stress, living plants propagate a chemical wave composed of H<sub>2</sub>O<sub>2</sub> through their tissues. Advances in nanosensors capable of measuring H<sub>2</sub>O<sub>2</sub> within the living plant in real time have informed a quantitative theory to describe the spatiotemporal profile of its concentration─labeled a signaling <i>waveform</i>. A heretofore unaddressed aspect of the theory is the role of the existing basal H<sub>2</sub>O<sub>2</sub> concentration level within the plant before and after stress wave propagation, potentially informing mechanisms of stress priming─or state changes associated with prior, low magnitude levels of stress that condition the resulting waveform. Herein, we develop a mathematical description of wave propagation within an existing basal level of H<sub>2</sub>O<sub>2</sub>. We show that the shape and intensity of the waveform can be mathematically decoupled from the basal H<sub>2</sub>O<sub>2</sub> concentration. This opens the possibility that the equilibrium basal concentration can operate as a distinct, orthogonal signaling channel, separate from the acute waveform following a discrete stress event. The mathematics developed herein may find utility in a more detailed description of mechanisms such as stress priming. More broadly, the results will aid in extending waveform analysis across diverse plant species and environmental conditions.</p>\",\"PeriodicalId\":93846,\"journal\":{\"name\":\"ACS agricultural science & technology\",\"volume\":\"5 7\",\"pages\":\"1434–1441\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS agricultural science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsagscitech.5c00206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS agricultural science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsagscitech.5c00206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了应对压力,活的植物通过组织传播一种由H2O2组成的化学波。能够实时测量活植物体内H2O2的纳米传感器的进展,为描述其浓度的时空分布提供了定量理论——标记为信号波形。迄今为止,该理论尚未解决的一个问题是,在胁迫波传播之前和之后,植物内现有的基础H2O2浓度水平的作用,可能会告知胁迫启动机制──或与先前的低强度胁迫相关的状态变化,从而影响产生的波形。在此,我们开发了在现有的H2O2基础水平内波传播的数学描述。我们证明波形的形状和强度可以从数学上与基础H2O2浓度解耦。这开启了一种可能性,即平衡基础浓度可以作为一个不同的正交信号通道,与离散应激事件后的急性波形分开。在此开发的数学可以在诸如应力启动等机制的更详细描述中找到效用。更广泛地说,结果将有助于扩展不同植物物种和环境条件下的波形分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Role of Basal H2O2 Concentration in ROS Stress Signaling Waveforms In Planta

The Role of Basal H2O2 Concentration in ROS Stress Signaling Waveforms In Planta

In response to stress, living plants propagate a chemical wave composed of H2O2 through their tissues. Advances in nanosensors capable of measuring H2O2 within the living plant in real time have informed a quantitative theory to describe the spatiotemporal profile of its concentration─labeled a signaling waveform. A heretofore unaddressed aspect of the theory is the role of the existing basal H2O2 concentration level within the plant before and after stress wave propagation, potentially informing mechanisms of stress priming─or state changes associated with prior, low magnitude levels of stress that condition the resulting waveform. Herein, we develop a mathematical description of wave propagation within an existing basal level of H2O2. We show that the shape and intensity of the waveform can be mathematically decoupled from the basal H2O2 concentration. This opens the possibility that the equilibrium basal concentration can operate as a distinct, orthogonal signaling channel, separate from the acute waveform following a discrete stress event. The mathematics developed herein may find utility in a more detailed description of mechanisms such as stress priming. More broadly, the results will aid in extending waveform analysis across diverse plant species and environmental conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信