基于Bi2O3/ZnO异质结的神经形态计算透明光电突触器件

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiuqing Cao*, Yang Wu, Wenfei Li, Jianwei Gu, Shoulei Xu, Wen Deng, Zhenying Chen and Leilei Yang*, 
{"title":"基于Bi2O3/ZnO异质结的神经形态计算透明光电突触器件","authors":"Xiuqing Cao*,&nbsp;Yang Wu,&nbsp;Wenfei Li,&nbsp;Jianwei Gu,&nbsp;Shoulei Xu,&nbsp;Wen Deng,&nbsp;Zhenying Chen and Leilei Yang*,&nbsp;","doi":"10.1021/acsaelm.5c00454","DOIUrl":null,"url":null,"abstract":"<p >Advancements in neuromorphic engineering rely on the development of efficient and scalable synaptic devices capable of emulating the complex functionalities of biological synapses. Here, we propose an optoelectronic synapse device based on a transparent Bi<sub>2</sub>O<sub>3</sub>/ZnO heterostructure, which exhibits biological synapse behaviors under the stimuli of 365 nm ultraviolet (UV) light. The light intensity, duration, and pulse number of the 365 nm UV light pulse are adjusted to simulate the synaptic behavior, including excitatory postsynaptic current, paired-pulse facilitation, short-term plasticity, and long-term plasticity. Furthermore, optical potentiation/electrical depression behaviors were conducted. Based on the synaptic plasticity characteristics, the Bi<sub>2</sub>O<sub>3</sub>/ZnO optoelectronic synapse demonstrates learning-memory functions and capability of MNIST handwritten digit recognition classification. The variation mechanism of nonvoltage-induced conductivity under UV light stimulus can be attributed to persistent photoconductivity effect in ZnO and Bi<sub>2</sub>O<sub>3</sub>, as well as the modulation of heterojunction interface trapping. This work presents a semiconductor microfabrication compatible artificial synapse, suggesting potential applications in visual neuromorphic systems.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 14","pages":"6332–6341"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transparent Optoelectronic Synapse Device Based on the Bi2O3/ZnO Heterojunction for Neuromorphic Computing\",\"authors\":\"Xiuqing Cao*,&nbsp;Yang Wu,&nbsp;Wenfei Li,&nbsp;Jianwei Gu,&nbsp;Shoulei Xu,&nbsp;Wen Deng,&nbsp;Zhenying Chen and Leilei Yang*,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c00454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Advancements in neuromorphic engineering rely on the development of efficient and scalable synaptic devices capable of emulating the complex functionalities of biological synapses. Here, we propose an optoelectronic synapse device based on a transparent Bi<sub>2</sub>O<sub>3</sub>/ZnO heterostructure, which exhibits biological synapse behaviors under the stimuli of 365 nm ultraviolet (UV) light. The light intensity, duration, and pulse number of the 365 nm UV light pulse are adjusted to simulate the synaptic behavior, including excitatory postsynaptic current, paired-pulse facilitation, short-term plasticity, and long-term plasticity. Furthermore, optical potentiation/electrical depression behaviors were conducted. Based on the synaptic plasticity characteristics, the Bi<sub>2</sub>O<sub>3</sub>/ZnO optoelectronic synapse demonstrates learning-memory functions and capability of MNIST handwritten digit recognition classification. The variation mechanism of nonvoltage-induced conductivity under UV light stimulus can be attributed to persistent photoconductivity effect in ZnO and Bi<sub>2</sub>O<sub>3</sub>, as well as the modulation of heterojunction interface trapping. This work presents a semiconductor microfabrication compatible artificial synapse, suggesting potential applications in visual neuromorphic systems.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 14\",\"pages\":\"6332–6341\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c00454\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c00454","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

神经形态工程的进步依赖于高效和可扩展的突触装置的发展,这些装置能够模拟生物突触的复杂功能。在此,我们提出了一种基于透明Bi2O3/ZnO异质结构的光电突触器件,该器件在365 nm紫外光刺激下表现出生物突触行为。通过调节365 nm紫外光脉冲的光强、持续时间和脉冲数来模拟突触行为,包括兴奋性突触后电流、成对脉冲促进、短期可塑性和长期可塑性。此外,还进行了光增强/电抑制行为。基于突触可塑性特性,Bi2O3/ZnO光电突触展示了学习记忆功能和MNIST手写体数字识别分类能力。紫外光刺激下非电压诱导电导率的变化机制可以归结为ZnO和Bi2O3中持续的光导效应,以及异质结界面俘获的调制。这项工作提出了一种半导体微加工兼容的人工突触,提示在视觉神经形态系统中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transparent Optoelectronic Synapse Device Based on the Bi2O3/ZnO Heterojunction for Neuromorphic Computing

Transparent Optoelectronic Synapse Device Based on the Bi2O3/ZnO Heterojunction for Neuromorphic Computing

Advancements in neuromorphic engineering rely on the development of efficient and scalable synaptic devices capable of emulating the complex functionalities of biological synapses. Here, we propose an optoelectronic synapse device based on a transparent Bi2O3/ZnO heterostructure, which exhibits biological synapse behaviors under the stimuli of 365 nm ultraviolet (UV) light. The light intensity, duration, and pulse number of the 365 nm UV light pulse are adjusted to simulate the synaptic behavior, including excitatory postsynaptic current, paired-pulse facilitation, short-term plasticity, and long-term plasticity. Furthermore, optical potentiation/electrical depression behaviors were conducted. Based on the synaptic plasticity characteristics, the Bi2O3/ZnO optoelectronic synapse demonstrates learning-memory functions and capability of MNIST handwritten digit recognition classification. The variation mechanism of nonvoltage-induced conductivity under UV light stimulus can be attributed to persistent photoconductivity effect in ZnO and Bi2O3, as well as the modulation of heterojunction interface trapping. This work presents a semiconductor microfabrication compatible artificial synapse, suggesting potential applications in visual neuromorphic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信