高能效、可扩展单层mos2基的突触场效应晶体管

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiman Kim, Byeongju Kim, Jiwon Ma, Sang-Yun Lim, Myeong-Hwan Choi, Hyeonu Jeong, Jaehoon Ji, Ji-Hoon Kang, Jiwon Chang*, Jiseok Kwon* and Tae Joon Park*, 
{"title":"高能效、可扩展单层mos2基的突触场效应晶体管","authors":"Jiman Kim,&nbsp;Byeongju Kim,&nbsp;Jiwon Ma,&nbsp;Sang-Yun Lim,&nbsp;Myeong-Hwan Choi,&nbsp;Hyeonu Jeong,&nbsp;Jaehoon Ji,&nbsp;Ji-Hoon Kang,&nbsp;Jiwon Chang*,&nbsp;Jiseok Kwon* and Tae Joon Park*,&nbsp;","doi":"10.1021/acsaelm.5c00808","DOIUrl":null,"url":null,"abstract":"<p >Neuromorphic computing has emerged as a promising strategy for overcoming the von Neumann bottleneck by enabling energy-efficient parallel information processing. To realize such systems, it is crucial to develop artificial synaptic devices that are both energy-efficient and highly scalable. In this study, we present a single-layer MoS<sub>2</sub>-based synaptic field-effect transistor (FET) with a high-κ top-gate dielectric stack for low-power, nonvolatile synaptic operations. The absence of a blocking layer simplifies the fabrication process while maintaining reliable memory characteristics. Synaptic weights are effectively modulated through the trapping and detrapping of electrons within a HfO<sub>2</sub> layer. The device exhibited stable long-term potentiation (LTP) and depression (LTD) with excellent endurance and reproducibility. Furthermore, the experimentally measured synaptic characteristics were implemented in a software-based deep neural network, achieving a recognition accuracy of 95.9% on the MNIST handwritten digit classification task. These findings highlight the potential of single-layer MoS<sub>2</sub> synaptic transistors as scalable energy-efficient neuromorphic building blocks.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 14","pages":"6491–6498"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-Efficient, Scalable Single-Layer MoS2–Based Synaptic Field-Effect Transistors\",\"authors\":\"Jiman Kim,&nbsp;Byeongju Kim,&nbsp;Jiwon Ma,&nbsp;Sang-Yun Lim,&nbsp;Myeong-Hwan Choi,&nbsp;Hyeonu Jeong,&nbsp;Jaehoon Ji,&nbsp;Ji-Hoon Kang,&nbsp;Jiwon Chang*,&nbsp;Jiseok Kwon* and Tae Joon Park*,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c00808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Neuromorphic computing has emerged as a promising strategy for overcoming the von Neumann bottleneck by enabling energy-efficient parallel information processing. To realize such systems, it is crucial to develop artificial synaptic devices that are both energy-efficient and highly scalable. In this study, we present a single-layer MoS<sub>2</sub>-based synaptic field-effect transistor (FET) with a high-κ top-gate dielectric stack for low-power, nonvolatile synaptic operations. The absence of a blocking layer simplifies the fabrication process while maintaining reliable memory characteristics. Synaptic weights are effectively modulated through the trapping and detrapping of electrons within a HfO<sub>2</sub> layer. The device exhibited stable long-term potentiation (LTP) and depression (LTD) with excellent endurance and reproducibility. Furthermore, the experimentally measured synaptic characteristics were implemented in a software-based deep neural network, achieving a recognition accuracy of 95.9% on the MNIST handwritten digit classification task. These findings highlight the potential of single-layer MoS<sub>2</sub> synaptic transistors as scalable energy-efficient neuromorphic building blocks.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 14\",\"pages\":\"6491–6498\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c00808\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c00808","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

神经形态计算已成为克服冯·诺伊曼瓶颈的一种有前途的策略,它使节能的并行信息处理成为可能。为了实现这样的系统,开发既节能又高度可扩展的人工突触装置至关重要。在这项研究中,我们提出了一种基于mos2的单层突触场效应晶体管(FET),具有高κ顶栅介电堆栈,用于低功耗,非易失性突触操作。没有阻塞层简化了制造过程,同时保持了可靠的存储特性。突触的重量是通过捕获和释放HfO2层内的电子有效调制的。该装置具有稳定的长期增强(LTP)和抑制(LTD),具有良好的耐久性和重复性。此外,实验测量的突触特征在基于软件的深度神经网络中实现,对MNIST手写体数字分类任务的识别准确率达到95.9%。这些发现突出了单层MoS2突触晶体管作为可扩展的节能神经形态构建模块的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Energy-Efficient, Scalable Single-Layer MoS2–Based Synaptic Field-Effect Transistors

Energy-Efficient, Scalable Single-Layer MoS2–Based Synaptic Field-Effect Transistors

Neuromorphic computing has emerged as a promising strategy for overcoming the von Neumann bottleneck by enabling energy-efficient parallel information processing. To realize such systems, it is crucial to develop artificial synaptic devices that are both energy-efficient and highly scalable. In this study, we present a single-layer MoS2-based synaptic field-effect transistor (FET) with a high-κ top-gate dielectric stack for low-power, nonvolatile synaptic operations. The absence of a blocking layer simplifies the fabrication process while maintaining reliable memory characteristics. Synaptic weights are effectively modulated through the trapping and detrapping of electrons within a HfO2 layer. The device exhibited stable long-term potentiation (LTP) and depression (LTD) with excellent endurance and reproducibility. Furthermore, the experimentally measured synaptic characteristics were implemented in a software-based deep neural network, achieving a recognition accuracy of 95.9% on the MNIST handwritten digit classification task. These findings highlight the potential of single-layer MoS2 synaptic transistors as scalable energy-efficient neuromorphic building blocks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信