Linda Supalová, Miroslav Bartošík*, Vojtěch Švarc, Jindřich Mach, Jakub Piastek, Ondřej Špaček, Martin Konečný and Tomáš Šikola,
{"title":"高温超灵敏fet基CVD石墨烯霍尔探头","authors":"Linda Supalová, Miroslav Bartošík*, Vojtěch Švarc, Jindřich Mach, Jakub Piastek, Ondřej Špaček, Martin Konečný and Tomáš Šikola, ","doi":"10.1021/acsaelm.5c00351","DOIUrl":null,"url":null,"abstract":"<p >Hall probes play a critical role in industrial applications such as electrical compasses, current sensors, and motion detectors; however, their performance often deteriorates at high temperatures. This study presents a magnetic-field probe with an ultrahigh sensitivity of 880 Ω/T at 150 °C, achieved using a graphene Hall bar integrated into a field-effect transistor (FET) architecture. To attain this exceptional sensitivity at elevated temperatures, careful control of doping, passivation, and manufacturing defects is essential. The doping level is optimized by adjusting the gate voltage to maintain the carrier concentration near the charge neutrality point (CNP). Further improvements in sensor response at high temperatures, as well as nearly a 2-fold increase in sensitivity at room temperature, are realized through polymer passivation of graphene. In contrast, it is demonstrated that patterning graphene into a narrower channel can increase the number of defects, which reduces the Hall probe’s sensitivity. These findings demonstrate the potential of CVD graphene as a durable and high-performance material for Hall probes in challenging environments.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 13","pages":"5889–5897"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsaelm.5c00351","citationCount":"0","resultStr":"{\"title\":\"High-Temperature Ultrasensitive FET-Based CVD Graphene Hall Probes\",\"authors\":\"Linda Supalová, Miroslav Bartošík*, Vojtěch Švarc, Jindřich Mach, Jakub Piastek, Ondřej Špaček, Martin Konečný and Tomáš Šikola, \",\"doi\":\"10.1021/acsaelm.5c00351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hall probes play a critical role in industrial applications such as electrical compasses, current sensors, and motion detectors; however, their performance often deteriorates at high temperatures. This study presents a magnetic-field probe with an ultrahigh sensitivity of 880 Ω/T at 150 °C, achieved using a graphene Hall bar integrated into a field-effect transistor (FET) architecture. To attain this exceptional sensitivity at elevated temperatures, careful control of doping, passivation, and manufacturing defects is essential. The doping level is optimized by adjusting the gate voltage to maintain the carrier concentration near the charge neutrality point (CNP). Further improvements in sensor response at high temperatures, as well as nearly a 2-fold increase in sensitivity at room temperature, are realized through polymer passivation of graphene. In contrast, it is demonstrated that patterning graphene into a narrower channel can increase the number of defects, which reduces the Hall probe’s sensitivity. These findings demonstrate the potential of CVD graphene as a durable and high-performance material for Hall probes in challenging environments.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 13\",\"pages\":\"5889–5897\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsaelm.5c00351\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c00351\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c00351","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
High-Temperature Ultrasensitive FET-Based CVD Graphene Hall Probes
Hall probes play a critical role in industrial applications such as electrical compasses, current sensors, and motion detectors; however, their performance often deteriorates at high temperatures. This study presents a magnetic-field probe with an ultrahigh sensitivity of 880 Ω/T at 150 °C, achieved using a graphene Hall bar integrated into a field-effect transistor (FET) architecture. To attain this exceptional sensitivity at elevated temperatures, careful control of doping, passivation, and manufacturing defects is essential. The doping level is optimized by adjusting the gate voltage to maintain the carrier concentration near the charge neutrality point (CNP). Further improvements in sensor response at high temperatures, as well as nearly a 2-fold increase in sensitivity at room temperature, are realized through polymer passivation of graphene. In contrast, it is demonstrated that patterning graphene into a narrower channel can increase the number of defects, which reduces the Hall probe’s sensitivity. These findings demonstrate the potential of CVD graphene as a durable and high-performance material for Hall probes in challenging environments.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico