利用氦聚焦离子束光刻技术单步制备过渡金属二硫化物横向异质结

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Letícia Mara Vieira Ildefonso, Wellerson dos Reis Ramos, Erika Lira Buthers, Bráulio Soares Archanjo, Cristiano Legnani, Welber Gianini Quirino, Daniel Vasconcelos Pazzini Massote, Indhira Oliveira Maciel and Benjamin Fragneaud*, 
{"title":"利用氦聚焦离子束光刻技术单步制备过渡金属二硫化物横向异质结","authors":"Letícia Mara Vieira Ildefonso,&nbsp;Wellerson dos Reis Ramos,&nbsp;Erika Lira Buthers,&nbsp;Bráulio Soares Archanjo,&nbsp;Cristiano Legnani,&nbsp;Welber Gianini Quirino,&nbsp;Daniel Vasconcelos Pazzini Massote,&nbsp;Indhira Oliveira Maciel and Benjamin Fragneaud*,&nbsp;","doi":"10.1021/acsaelm.5c00558","DOIUrl":null,"url":null,"abstract":"<p >Although semiconductor two dimensional (2D) materials are of great interest for atomically thick nanoelectronics, the production of in-plane heterojunctions using 2D transition metal dichalcogenides (TMDs) still remains challenging. We found that using high-resolution helium focused ion beam (He-FIB), we were able to tune the optoelectronic properties of WS<sub>2</sub> and WSe<sub>2</sub> in order to produce in-plane heterostructures through defect engineering. In this work, we bombarded CVD-grown monolayer WSe<sub>2</sub> and WS<sub>2</sub> with He ions to produce a photoresist-free heterojunction. We investigated the optoelectronic properties at the interface between the pristine and bombarded regions with Raman and photoluminescence spectroscopies as well as Kelvin probe force microscopy (KPFM). Density functional theory (DFT) calculations allowed us to show that chalcogen vacancy sites play a major role in tuning the work function value. By taking into account the effect of electronic doping, we could elucidate the charge transfer mechanisms at the interface between pristine and bombarded material. We demonstrated that a single nanopatterning step resulted in the fabrication of 2D materials heterojunctions.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 12","pages":"5559–5569"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsaelm.5c00558","citationCount":"0","resultStr":"{\"title\":\"Single-Step Fabrication of Transition Metal Dichalcogenide Lateral Heterojunctions Using Helium-Focused Ion Beam Lithography\",\"authors\":\"Letícia Mara Vieira Ildefonso,&nbsp;Wellerson dos Reis Ramos,&nbsp;Erika Lira Buthers,&nbsp;Bráulio Soares Archanjo,&nbsp;Cristiano Legnani,&nbsp;Welber Gianini Quirino,&nbsp;Daniel Vasconcelos Pazzini Massote,&nbsp;Indhira Oliveira Maciel and Benjamin Fragneaud*,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c00558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Although semiconductor two dimensional (2D) materials are of great interest for atomically thick nanoelectronics, the production of in-plane heterojunctions using 2D transition metal dichalcogenides (TMDs) still remains challenging. We found that using high-resolution helium focused ion beam (He-FIB), we were able to tune the optoelectronic properties of WS<sub>2</sub> and WSe<sub>2</sub> in order to produce in-plane heterostructures through defect engineering. In this work, we bombarded CVD-grown monolayer WSe<sub>2</sub> and WS<sub>2</sub> with He ions to produce a photoresist-free heterojunction. We investigated the optoelectronic properties at the interface between the pristine and bombarded regions with Raman and photoluminescence spectroscopies as well as Kelvin probe force microscopy (KPFM). Density functional theory (DFT) calculations allowed us to show that chalcogen vacancy sites play a major role in tuning the work function value. By taking into account the effect of electronic doping, we could elucidate the charge transfer mechanisms at the interface between pristine and bombarded material. We demonstrated that a single nanopatterning step resulted in the fabrication of 2D materials heterojunctions.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 12\",\"pages\":\"5559–5569\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsaelm.5c00558\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c00558\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c00558","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

虽然半导体二维(2D)材料在原子厚度纳米电子学中具有很大的兴趣,但使用二维过渡金属二硫族化合物(TMDs)生产平面内异质结仍然具有挑战性。我们发现使用高分辨率氦聚焦离子束(He-FIB),我们能够通过缺陷工程调整WS2和WSe2的光电特性,从而产生平面内异质结构。在这项工作中,我们用He离子轰击cvd生长的单层WSe2和WS2,以产生无光阻异质结。我们用拉曼光谱和光致发光光谱以及开尔文探针力显微镜(KPFM)研究了原始区和轰击区之间界面的光电特性。密度泛函理论(DFT)计算表明,在调节功函数值方面,碳空位位置起着重要作用。通过考虑电子掺杂的影响,我们可以阐明原始材料和轰击材料界面上的电荷转移机制。我们证明了单个纳米图案化步骤导致二维材料异质结的制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-Step Fabrication of Transition Metal Dichalcogenide Lateral Heterojunctions Using Helium-Focused Ion Beam Lithography

Although semiconductor two dimensional (2D) materials are of great interest for atomically thick nanoelectronics, the production of in-plane heterojunctions using 2D transition metal dichalcogenides (TMDs) still remains challenging. We found that using high-resolution helium focused ion beam (He-FIB), we were able to tune the optoelectronic properties of WS2 and WSe2 in order to produce in-plane heterostructures through defect engineering. In this work, we bombarded CVD-grown monolayer WSe2 and WS2 with He ions to produce a photoresist-free heterojunction. We investigated the optoelectronic properties at the interface between the pristine and bombarded regions with Raman and photoluminescence spectroscopies as well as Kelvin probe force microscopy (KPFM). Density functional theory (DFT) calculations allowed us to show that chalcogen vacancy sites play a major role in tuning the work function value. By taking into account the effect of electronic doping, we could elucidate the charge transfer mechanisms at the interface between pristine and bombarded material. We demonstrated that a single nanopatterning step resulted in the fabrication of 2D materials heterojunctions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信