超表面中太赫兹自激动态慢光行为

IF 3.8
Soumyajyoti Mallick, Nityananda Acharyya, Vineet Gupta, Shreeya Rane, Koijam Monika Devi, Ashutosh Sharma, József A. Fülöp* and Dibakar Roy Chowdhury*, 
{"title":"超表面中太赫兹自激动态慢光行为","authors":"Soumyajyoti Mallick,&nbsp;Nityananda Acharyya,&nbsp;Vineet Gupta,&nbsp;Shreeya Rane,&nbsp;Koijam Monika Devi,&nbsp;Ashutosh Sharma,&nbsp;József A. Fülöp* and Dibakar Roy Chowdhury*,&nbsp;","doi":"10.1021/acsaom.5c00135","DOIUrl":null,"url":null,"abstract":"<p >Dynamically reconfigurable metasurfaces are complex to realize because they require exotic materials, external stimuli, or both. However, with the advent of intense THz transients, these conventional preconditions can be bypassed. Strong THz fields are capable of invoking modulation of the electronic configuration in materials through impact ionization. In this context, we report the diligent intertwining of strong THz field-induced nonlinearities and the structural interactions of near-field coupled metastructures. We experimentally demonstrate a well-established metal-on-silicon metasurface framework to achieve reconfigurability that is devoid of any exotic materials or external stimuli. Aided by meta-geometry, intense THz transients modify the dispersion of the silicon substrate, leading to self-induced nonlinear modulations in conductivities. Altering the conductivity through impact ionization results in dynamically reconfigurable electromagnetically induced transparency (EIT) effects in a self-sustained manner, controlling the slow-light characteristics (group delay and the group velocity) by more than 6 times. These outcomes could potentially enable versatile applications in upcoming 6G technologies and on-chip silicon-based integrated photonics.</p>","PeriodicalId":29803,"journal":{"name":"ACS Applied Optical Materials","volume":"3 6","pages":"1357–1364"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terahertz Self-Induced Dynamic Slow-Light Behavior in Metasurfaces\",\"authors\":\"Soumyajyoti Mallick,&nbsp;Nityananda Acharyya,&nbsp;Vineet Gupta,&nbsp;Shreeya Rane,&nbsp;Koijam Monika Devi,&nbsp;Ashutosh Sharma,&nbsp;József A. Fülöp* and Dibakar Roy Chowdhury*,&nbsp;\",\"doi\":\"10.1021/acsaom.5c00135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Dynamically reconfigurable metasurfaces are complex to realize because they require exotic materials, external stimuli, or both. However, with the advent of intense THz transients, these conventional preconditions can be bypassed. Strong THz fields are capable of invoking modulation of the electronic configuration in materials through impact ionization. In this context, we report the diligent intertwining of strong THz field-induced nonlinearities and the structural interactions of near-field coupled metastructures. We experimentally demonstrate a well-established metal-on-silicon metasurface framework to achieve reconfigurability that is devoid of any exotic materials or external stimuli. Aided by meta-geometry, intense THz transients modify the dispersion of the silicon substrate, leading to self-induced nonlinear modulations in conductivities. Altering the conductivity through impact ionization results in dynamically reconfigurable electromagnetically induced transparency (EIT) effects in a self-sustained manner, controlling the slow-light characteristics (group delay and the group velocity) by more than 6 times. These outcomes could potentially enable versatile applications in upcoming 6G technologies and on-chip silicon-based integrated photonics.</p>\",\"PeriodicalId\":29803,\"journal\":{\"name\":\"ACS Applied Optical Materials\",\"volume\":\"3 6\",\"pages\":\"1357–1364\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Optical Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaom.5c00135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Optical Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaom.5c00135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态可重构的超表面是复杂的实现,因为它们需要外来材料,外部刺激,或两者兼而有之。然而,随着强太赫兹瞬变的出现,这些传统的先决条件可以被绕过。强太赫兹场能够通过冲击电离调用材料中电子构型的调制。在这种情况下,我们报告了强太赫兹场诱导的非线性和近场耦合元结构的结构相互作用的勤奋纠缠。我们通过实验证明了一种完善的金属-硅超表面框架,以实现无任何外来材料或外部刺激的可重构性。在元几何的帮助下,强太赫兹瞬态改变了硅衬底的色散,导致电导率的自诱导非线性调制。通过冲击电离改变电导率,以自我持续的方式产生动态可重构的电磁诱导透明(EIT)效应,将慢光特性(群延迟和群速度)控制在6倍以上。这些成果可能会在即将到来的6G技术和片上硅基集成光子学中实现多种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Terahertz Self-Induced Dynamic Slow-Light Behavior in Metasurfaces

Terahertz Self-Induced Dynamic Slow-Light Behavior in Metasurfaces

Dynamically reconfigurable metasurfaces are complex to realize because they require exotic materials, external stimuli, or both. However, with the advent of intense THz transients, these conventional preconditions can be bypassed. Strong THz fields are capable of invoking modulation of the electronic configuration in materials through impact ionization. In this context, we report the diligent intertwining of strong THz field-induced nonlinearities and the structural interactions of near-field coupled metastructures. We experimentally demonstrate a well-established metal-on-silicon metasurface framework to achieve reconfigurability that is devoid of any exotic materials or external stimuli. Aided by meta-geometry, intense THz transients modify the dispersion of the silicon substrate, leading to self-induced nonlinear modulations in conductivities. Altering the conductivity through impact ionization results in dynamically reconfigurable electromagnetically induced transparency (EIT) effects in a self-sustained manner, controlling the slow-light characteristics (group delay and the group velocity) by more than 6 times. These outcomes could potentially enable versatile applications in upcoming 6G technologies and on-chip silicon-based integrated photonics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Optical Materials
ACS Applied Optical Materials 材料科学-光学材料-
CiteScore
1.10
自引率
0.00%
发文量
0
期刊介绍: ACS Applied Optical Materials is an international and interdisciplinary forum to publish original experimental and theoretical including simulation and modeling research in optical materials complementing the ACS Applied Materials portfolio. With a focus on innovative applications ACS Applied Optical Materials also complements and expands the scope of existing ACS publications that focus on fundamental aspects of the interaction between light and matter in materials science including ACS Photonics Macromolecules Journal of Physical Chemistry C ACS Nano and Nano Letters.The scope of ACS Applied Optical Materials includes high quality research of an applied nature that integrates knowledge in materials science chemistry physics optical science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信