无创vdWs电极实现超低工作电压六方氮化硼忆阻器

IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yu Kang, Xingyu Zhai, Quan Yang, Jiayang Hu, Zhixiang Zhang, Jialei Miao, Haohan Chen, Dong Pu, Huan Hu, Wenchao Chen, Yuda Zhao* and Bin Yu*, 
{"title":"无创vdWs电极实现超低工作电压六方氮化硼忆阻器","authors":"Yu Kang,&nbsp;Xingyu Zhai,&nbsp;Quan Yang,&nbsp;Jiayang Hu,&nbsp;Zhixiang Zhang,&nbsp;Jialei Miao,&nbsp;Haohan Chen,&nbsp;Dong Pu,&nbsp;Huan Hu,&nbsp;Wenchao Chen,&nbsp;Yuda Zhao* and Bin Yu*,&nbsp;","doi":"10.1021/acsmaterialslett.5c00380","DOIUrl":null,"url":null,"abstract":"<p >Future electronics calls for energy efficiency of nonvolatile memristor. An effective route to implement a low-power memristor is to manipulate the ionic dynamics in the resistive switching medium. The roughness of the interface between electrode and medium layer determines the initial ions distribution. However, conventional metal deposition methods create surface roughness that damages the medium layer. The random ion diffusion derived from the intrusive rough electrode results in unstable conductive filaments and degrades memristor energy efficiency. Here, we demonstrate a new strategy to integrate noninvasive rough metal electrode for ultralow-voltage, robust nonvolatile memristor. The rough electrode is prefabricated and laminated onto the h-BN layer. The improved noninvasive rough metal/dielectric interface facilitates ultraconfined conductive path formation, leading to superb memristive performance with SET voltage down to 41 mV. The integration approach is demonstrated to be viable to realize 2D dielectric memristor with ultralow operating voltage, pushing the boundary of device energy efficiency.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 7","pages":"2574–2579"},"PeriodicalIF":8.7000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hexagonal Boron Nitride Memristor with Ultralow Operating Voltage Enabled by Noninvasive vdWs Electrode\",\"authors\":\"Yu Kang,&nbsp;Xingyu Zhai,&nbsp;Quan Yang,&nbsp;Jiayang Hu,&nbsp;Zhixiang Zhang,&nbsp;Jialei Miao,&nbsp;Haohan Chen,&nbsp;Dong Pu,&nbsp;Huan Hu,&nbsp;Wenchao Chen,&nbsp;Yuda Zhao* and Bin Yu*,&nbsp;\",\"doi\":\"10.1021/acsmaterialslett.5c00380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Future electronics calls for energy efficiency of nonvolatile memristor. An effective route to implement a low-power memristor is to manipulate the ionic dynamics in the resistive switching medium. The roughness of the interface between electrode and medium layer determines the initial ions distribution. However, conventional metal deposition methods create surface roughness that damages the medium layer. The random ion diffusion derived from the intrusive rough electrode results in unstable conductive filaments and degrades memristor energy efficiency. Here, we demonstrate a new strategy to integrate noninvasive rough metal electrode for ultralow-voltage, robust nonvolatile memristor. The rough electrode is prefabricated and laminated onto the h-BN layer. The improved noninvasive rough metal/dielectric interface facilitates ultraconfined conductive path formation, leading to superb memristive performance with SET voltage down to 41 mV. The integration approach is demonstrated to be viable to realize 2D dielectric memristor with ultralow operating voltage, pushing the boundary of device energy efficiency.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 7\",\"pages\":\"2574–2579\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00380\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00380","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

未来的电子学要求非易失性忆阻器的能源效率。实现低功率忆阻器的有效途径是控制阻性开关介质中的离子动力学。电极与介质层界面的粗糙度决定了初始离子的分布。然而,传统的金属沉积方法会产生表面粗糙度,从而破坏介质层。侵入性粗糙电极产生的随机离子扩散导致导电丝不稳定,降低了忆阻器的能量效率。在这里,我们展示了一种新的策略,将非侵入性粗糙金属电极集成到超低电压,鲁棒非易失性记忆电阻器中。将粗电极预制并层压在h-BN层上。改进的非侵入性粗糙金属/介电界面促进了超受限导电路径的形成,从而实现了极好的忆阻性能,SET电压低至41 mV。该集成方法可实现二维介质忆阻器的超低工作电压,突破器件能效的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hexagonal Boron Nitride Memristor with Ultralow Operating Voltage Enabled by Noninvasive vdWs Electrode

Hexagonal Boron Nitride Memristor with Ultralow Operating Voltage Enabled by Noninvasive vdWs Electrode

Future electronics calls for energy efficiency of nonvolatile memristor. An effective route to implement a low-power memristor is to manipulate the ionic dynamics in the resistive switching medium. The roughness of the interface between electrode and medium layer determines the initial ions distribution. However, conventional metal deposition methods create surface roughness that damages the medium layer. The random ion diffusion derived from the intrusive rough electrode results in unstable conductive filaments and degrades memristor energy efficiency. Here, we demonstrate a new strategy to integrate noninvasive rough metal electrode for ultralow-voltage, robust nonvolatile memristor. The rough electrode is prefabricated and laminated onto the h-BN layer. The improved noninvasive rough metal/dielectric interface facilitates ultraconfined conductive path formation, leading to superb memristive performance with SET voltage down to 41 mV. The integration approach is demonstrated to be viable to realize 2D dielectric memristor with ultralow operating voltage, pushing the boundary of device energy efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信