构建磁梯度界面增强PZT MFC/ metglass磁电复合材料的自偏置磁发射强度

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Wei Jin, Shiyue You, Zhi Qin, Liang Ma, Dengcai Shi, Jie Shen, Jing Zhou and Wen Chen*, 
{"title":"构建磁梯度界面增强PZT MFC/ metglass磁电复合材料的自偏置磁发射强度","authors":"Wei Jin,&nbsp;Shiyue You,&nbsp;Zhi Qin,&nbsp;Liang Ma,&nbsp;Dengcai Shi,&nbsp;Jie Shen,&nbsp;Jing Zhou and Wen Chen*,&nbsp;","doi":"10.1021/acsaelm.5c00924","DOIUrl":null,"url":null,"abstract":"<p >Magnetoelectric (ME) composites have gained significant attention as promising candidates for miniaturizing very-low-frequency (VLF) communication systems. Nevertheless, the inherent limitation of these composites lies in their suboptimal magnetic emission intensity under zero-bias magnetic field conditions. In this study, an innovative magneto-gradient ME composite was designed to achieve enhanced magnetic emission performance without external magnetic bias. The designed composite features a sandwich-like structure comprising a Pb(Zr, Ti)O<sub>3</sub> macro-fiber composite (PZT MFC) piezoelectric layer, an epoxy adhesive matrix uniformly filled with Terfenol-D magnetic particles, and a FeBSi (Metglas) magnetostrictive plate. The strategic incorporation of Terfenol-D particles establishes a controlled magnetic gradient between the Metglas layer and the adhesive interlayer, thereby inducing an intrinsic bias magnetic field. This self-bias mechanism enables a significant enhancement of magnetic emission performance without increasing the size of the ME antenna. Furthermore, the Terfenol-D-filled adhesive layer serves dual functions by simultaneously optimizing the acoustic impedance matching between the PZT-MFC actuator and Metglas resonator, thereby improving strain energy transfer efficiency across the interface. The experimental results show that ME composite with 40 vol % Terfenol-D achieves a magnetic emission intensity of 1 nT at 0.8 m transmission distance, tripling the performance of conventional unfilled counterparts. The optimized ME antenna demonstrates a successful amplitude-shift keying (ASK)-modulated data transmission with enhanced signal integrity. This magnetic-particle-filling approach presents a facile yet effective method for amplifying the ME response through built-in field engineering while providing a viable pathway toward practical implementation of compact VLF communication systems.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 14","pages":"6601–6609"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Self-Bias Magnetic Emission Intensity in PZT MFC/Metglas Magnetoelectric Composites by Constructing a Magneto-Gradient Interface\",\"authors\":\"Wei Jin,&nbsp;Shiyue You,&nbsp;Zhi Qin,&nbsp;Liang Ma,&nbsp;Dengcai Shi,&nbsp;Jie Shen,&nbsp;Jing Zhou and Wen Chen*,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c00924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Magnetoelectric (ME) composites have gained significant attention as promising candidates for miniaturizing very-low-frequency (VLF) communication systems. Nevertheless, the inherent limitation of these composites lies in their suboptimal magnetic emission intensity under zero-bias magnetic field conditions. In this study, an innovative magneto-gradient ME composite was designed to achieve enhanced magnetic emission performance without external magnetic bias. The designed composite features a sandwich-like structure comprising a Pb(Zr, Ti)O<sub>3</sub> macro-fiber composite (PZT MFC) piezoelectric layer, an epoxy adhesive matrix uniformly filled with Terfenol-D magnetic particles, and a FeBSi (Metglas) magnetostrictive plate. The strategic incorporation of Terfenol-D particles establishes a controlled magnetic gradient between the Metglas layer and the adhesive interlayer, thereby inducing an intrinsic bias magnetic field. This self-bias mechanism enables a significant enhancement of magnetic emission performance without increasing the size of the ME antenna. Furthermore, the Terfenol-D-filled adhesive layer serves dual functions by simultaneously optimizing the acoustic impedance matching between the PZT-MFC actuator and Metglas resonator, thereby improving strain energy transfer efficiency across the interface. The experimental results show that ME composite with 40 vol % Terfenol-D achieves a magnetic emission intensity of 1 nT at 0.8 m transmission distance, tripling the performance of conventional unfilled counterparts. The optimized ME antenna demonstrates a successful amplitude-shift keying (ASK)-modulated data transmission with enhanced signal integrity. This magnetic-particle-filling approach presents a facile yet effective method for amplifying the ME response through built-in field engineering while providing a viable pathway toward practical implementation of compact VLF communication systems.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 14\",\"pages\":\"6601–6609\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c00924\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c00924","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

磁电(ME)复合材料作为小型化甚低频(VLF)通信系统的有前途的候选者,受到了极大的关注。然而,这些复合材料的固有局限性在于它们在零偏置磁场条件下的磁发射强度不是最佳的。在这项研究中,设计了一种创新的磁梯度ME复合材料,以实现无外部磁偏的增强磁发射性能。所设计的复合材料具有三明治状结构,由Pb(Zr, Ti)O3宏纤维复合材料(PZT MFC)压电层、均匀填充Terfenol-D磁性颗粒的环氧胶粘剂基体和FeBSi (Metglas)磁致伸缩板组成。Terfenol-D颗粒的策略性掺入在metglass层和粘合剂中间层之间建立了可控的磁梯度,从而诱导了一个固有的偏置磁场。这种自偏置机制可以在不增加ME天线尺寸的情况下显著增强磁发射性能。此外,terfenol - d填充的粘接层具有双重功能,同时优化了PZT-MFC致动器和metglass谐振器之间的声阻抗匹配,从而提高了跨界面的应变能传递效率。实验结果表明,掺量为40 vol % Terfenol-D的ME复合材料在0.8 m传输距离处的磁发射强度为1 nT,是常规未填充材料的3倍。优化后的ME天线成功实现了移幅键控(ASK)调制数据传输,增强了信号完整性。这种磁粒子填充方法提供了一种简单而有效的方法,通过内置的现场工程来放大ME响应,同时为紧凑型VLF通信系统的实际实施提供了可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Self-Bias Magnetic Emission Intensity in PZT MFC/Metglas Magnetoelectric Composites by Constructing a Magneto-Gradient Interface

Enhanced Self-Bias Magnetic Emission Intensity in PZT MFC/Metglas Magnetoelectric Composites by Constructing a Magneto-Gradient Interface

Magnetoelectric (ME) composites have gained significant attention as promising candidates for miniaturizing very-low-frequency (VLF) communication systems. Nevertheless, the inherent limitation of these composites lies in their suboptimal magnetic emission intensity under zero-bias magnetic field conditions. In this study, an innovative magneto-gradient ME composite was designed to achieve enhanced magnetic emission performance without external magnetic bias. The designed composite features a sandwich-like structure comprising a Pb(Zr, Ti)O3 macro-fiber composite (PZT MFC) piezoelectric layer, an epoxy adhesive matrix uniformly filled with Terfenol-D magnetic particles, and a FeBSi (Metglas) magnetostrictive plate. The strategic incorporation of Terfenol-D particles establishes a controlled magnetic gradient between the Metglas layer and the adhesive interlayer, thereby inducing an intrinsic bias magnetic field. This self-bias mechanism enables a significant enhancement of magnetic emission performance without increasing the size of the ME antenna. Furthermore, the Terfenol-D-filled adhesive layer serves dual functions by simultaneously optimizing the acoustic impedance matching between the PZT-MFC actuator and Metglas resonator, thereby improving strain energy transfer efficiency across the interface. The experimental results show that ME composite with 40 vol % Terfenol-D achieves a magnetic emission intensity of 1 nT at 0.8 m transmission distance, tripling the performance of conventional unfilled counterparts. The optimized ME antenna demonstrates a successful amplitude-shift keying (ASK)-modulated data transmission with enhanced signal integrity. This magnetic-particle-filling approach presents a facile yet effective method for amplifying the ME response through built-in field engineering while providing a viable pathway toward practical implementation of compact VLF communication systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信