无场自旋-轨道转矩诱导交换偏置开关

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Chun-Yi Lin, Tzu-Chien Huang, Tzu-Chuan Hsin and Chi-Feng Pai*, 
{"title":"无场自旋-轨道转矩诱导交换偏置开关","authors":"Chun-Yi Lin,&nbsp;Tzu-Chien Huang,&nbsp;Tzu-Chuan Hsin and Chi-Feng Pai*,&nbsp;","doi":"10.1021/acsaelm.5c00974","DOIUrl":null,"url":null,"abstract":"<p >The ability to electrically control exchange bias (EB) in antiferromagnet/ferromagnet (AFM/FM) heterostructures is crucial for advancing energy-efficient and multifunctional spintronic devices. In this work, we systematically investigate spin–orbit torque (SOT)-induced EB switching in IrMn-based heterostructures. By tuning the sputtering power during IrMn deposition, we achieve precise control of its (111) texture and demonstrate an enhanced exchange bias field (<i>H</i><sub>ex</sub>) exceeding 750 Oe. Detailed IrMn thickness-dependent studies further reveal that the EB saturates beyond 10 nm, consistent with the estimated domain wall width, and the SOT switching of EB is governed primarily by interfacial spin interactions. In patterned pillar devices, we demonstrate 100% deterministic SOT-induced EB switching, overcoming signal degradation in crossbar geometries. Furthermore, by introducing a tilted anisotropy through wedged deposition of the bottom Pt layer, we realize robust, field-free SOT-induced perpendicular EB switching. Our findings provide a pathway toward practical AFM-based spintronic memory with scalable and field-free operation.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 14","pages":"6655–6663"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsaelm.5c00974","citationCount":"0","resultStr":"{\"title\":\"Field-Free Spin–Orbit Torque-Induced Exchange Bias Switching\",\"authors\":\"Chun-Yi Lin,&nbsp;Tzu-Chien Huang,&nbsp;Tzu-Chuan Hsin and Chi-Feng Pai*,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c00974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The ability to electrically control exchange bias (EB) in antiferromagnet/ferromagnet (AFM/FM) heterostructures is crucial for advancing energy-efficient and multifunctional spintronic devices. In this work, we systematically investigate spin–orbit torque (SOT)-induced EB switching in IrMn-based heterostructures. By tuning the sputtering power during IrMn deposition, we achieve precise control of its (111) texture and demonstrate an enhanced exchange bias field (<i>H</i><sub>ex</sub>) exceeding 750 Oe. Detailed IrMn thickness-dependent studies further reveal that the EB saturates beyond 10 nm, consistent with the estimated domain wall width, and the SOT switching of EB is governed primarily by interfacial spin interactions. In patterned pillar devices, we demonstrate 100% deterministic SOT-induced EB switching, overcoming signal degradation in crossbar geometries. Furthermore, by introducing a tilted anisotropy through wedged deposition of the bottom Pt layer, we realize robust, field-free SOT-induced perpendicular EB switching. Our findings provide a pathway toward practical AFM-based spintronic memory with scalable and field-free operation.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 14\",\"pages\":\"6655–6663\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsaelm.5c00974\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c00974\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c00974","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在反铁磁体/铁磁体(AFM/FM)异质结构中控制交换偏置(EB)的能力对于推进节能和多功能自旋电子器件至关重要。在这项工作中,我们系统地研究了基于irmn的异质结构中自旋轨道扭矩(SOT)诱导的EB开关。通过调整IrMn沉积过程中的溅射功率,我们实现了对其(111)织体的精确控制,并证明了超过750 Oe的增强交换偏置场(Hex)。详细的IrMn厚度依赖性研究进一步表明,EB在10 nm以上饱和,与估计的畴壁宽度一致,并且EB的SOT开关主要由界面自旋相互作用控制。在图案柱器件中,我们展示了100%确定的sot诱导的EB开关,克服了横杆几何形状中的信号退化。此外,通过底部Pt层的楔形沉积引入倾斜的各向异性,我们实现了稳健的无场sot诱导垂直EB开关。我们的发现为实际的基于原子力显微镜的自旋电子存储器提供了一条可扩展和无场操作的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Field-Free Spin–Orbit Torque-Induced Exchange Bias Switching

The ability to electrically control exchange bias (EB) in antiferromagnet/ferromagnet (AFM/FM) heterostructures is crucial for advancing energy-efficient and multifunctional spintronic devices. In this work, we systematically investigate spin–orbit torque (SOT)-induced EB switching in IrMn-based heterostructures. By tuning the sputtering power during IrMn deposition, we achieve precise control of its (111) texture and demonstrate an enhanced exchange bias field (Hex) exceeding 750 Oe. Detailed IrMn thickness-dependent studies further reveal that the EB saturates beyond 10 nm, consistent with the estimated domain wall width, and the SOT switching of EB is governed primarily by interfacial spin interactions. In patterned pillar devices, we demonstrate 100% deterministic SOT-induced EB switching, overcoming signal degradation in crossbar geometries. Furthermore, by introducing a tilted anisotropy through wedged deposition of the bottom Pt layer, we realize robust, field-free SOT-induced perpendicular EB switching. Our findings provide a pathway toward practical AFM-based spintronic memory with scalable and field-free operation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信