紫外光下TiO2纳米颗粒对三磷酸(1,3-二氯丙基)磷酸盐的快速降解和解毒:动力学和机制,环境影响,以及对DFT的见解

IF 2.9 Q1 AGRICULTURE, MULTIDISCIPLINARY
Ming Chang, Tesfaye Abebe Geleta, Hong-Jhang Chen and Yang-hsin Shih*, 
{"title":"紫外光下TiO2纳米颗粒对三磷酸(1,3-二氯丙基)磷酸盐的快速降解和解毒:动力学和机制,环境影响,以及对DFT的见解","authors":"Ming Chang,&nbsp;Tesfaye Abebe Geleta,&nbsp;Hong-Jhang Chen and Yang-hsin Shih*,&nbsp;","doi":"10.1021/acsagscitech.5c00177","DOIUrl":null,"url":null,"abstract":"<p >The widespread use of tris(1,3-dichloropropyl) phosphate (TDCPP), a phosphorus flame retardant, has raised significant environmental concerns because of its persistence and toxicity. This study examines the photodegradation of TDCPP (0.25 mg/L) using titanium dioxide (TiO<sub>2</sub>) nanoparticles (P25 NPs) (50 mg/L) under UV irradiation, focusing on the effects of electrolytes, such as NaCl and NaBr, pH, and temperature. TiO<sub>2</sub> NPs degraded TDCPP within 60 min, achieving nearly complete mineralization and release of chloride ions (Cl−). The degradation rate decreased with higher initial TDCPP concentrations but increased with higher TiO<sub>2</sub> dosages. Acidic conditions enhanced photodegradation, while the presence of electrolytes caused nanoparticle aggregation, increasing the particle size and reducing the photocatalytic efficiency. Chloride (Cl−) and bromide ions (Br−) acted as radical scavengers, inhibiting the formation of reactive hydroxyl radicals (HO•). Notably, 89% of the total organic carbon (TOC) was eliminated from TDCPP after 60 min of UV illumination, indicating mineralization into carbon dioxide and water. The degradation intermediates were analyzed using ultrahigh-performance liquid chromatography (UHPLC), and two byproducts were identified after 10 min of treatment. Acute and chronic toxicity analyses revealed that TDCPP’s intermediates were nontoxic. Density functional theory (DFT) calculations provide insights into electronic structures and degradation pathways. This research contributes to strategies for mitigating the environmental impact of hazardous flame retardants such as TDCPP.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"5 7","pages":"1400–1412"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsagscitech.5c00177","citationCount":"0","resultStr":"{\"title\":\"Rapid Tris(1,3-dichloropropyl) Phosphate Degradation and Detoxification via TiO2 Nanoparticles under UV Light: Kinetics and Mechanism, Environmental Implications, and Insights into DFT\",\"authors\":\"Ming Chang,&nbsp;Tesfaye Abebe Geleta,&nbsp;Hong-Jhang Chen and Yang-hsin Shih*,&nbsp;\",\"doi\":\"10.1021/acsagscitech.5c00177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The widespread use of tris(1,3-dichloropropyl) phosphate (TDCPP), a phosphorus flame retardant, has raised significant environmental concerns because of its persistence and toxicity. This study examines the photodegradation of TDCPP (0.25 mg/L) using titanium dioxide (TiO<sub>2</sub>) nanoparticles (P25 NPs) (50 mg/L) under UV irradiation, focusing on the effects of electrolytes, such as NaCl and NaBr, pH, and temperature. TiO<sub>2</sub> NPs degraded TDCPP within 60 min, achieving nearly complete mineralization and release of chloride ions (Cl−). The degradation rate decreased with higher initial TDCPP concentrations but increased with higher TiO<sub>2</sub> dosages. Acidic conditions enhanced photodegradation, while the presence of electrolytes caused nanoparticle aggregation, increasing the particle size and reducing the photocatalytic efficiency. Chloride (Cl−) and bromide ions (Br−) acted as radical scavengers, inhibiting the formation of reactive hydroxyl radicals (HO•). Notably, 89% of the total organic carbon (TOC) was eliminated from TDCPP after 60 min of UV illumination, indicating mineralization into carbon dioxide and water. The degradation intermediates were analyzed using ultrahigh-performance liquid chromatography (UHPLC), and two byproducts were identified after 10 min of treatment. Acute and chronic toxicity analyses revealed that TDCPP’s intermediates were nontoxic. Density functional theory (DFT) calculations provide insights into electronic structures and degradation pathways. This research contributes to strategies for mitigating the environmental impact of hazardous flame retardants such as TDCPP.</p>\",\"PeriodicalId\":93846,\"journal\":{\"name\":\"ACS agricultural science & technology\",\"volume\":\"5 7\",\"pages\":\"1400–1412\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsagscitech.5c00177\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS agricultural science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsagscitech.5c00177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS agricultural science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsagscitech.5c00177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

三(1,3-二氯丙基)磷酸盐(TDCPP)是一种磷类阻燃剂,由于其持久性和毒性而广泛使用,引起了严重的环境问题。本研究考察了二氧化钛纳米粒子(P25 NPs) (50 mg/L)在紫外光照射下对TDCPP (0.25 mg/L)的光降解,重点考察了电解质(如NaCl和NaBr)、pH和温度的影响。TiO2 NPs在60 min内降解了TDCPP,实现了近乎完全的矿化和氯离子(Cl−)的释放。初始TDCPP浓度越高,降解率越低,TiO2用量越大,降解率越高。酸性条件增强了光降解,而电解质的存在导致纳米颗粒聚集,增加了颗粒尺寸,降低了光催化效率。氯离子(Cl−)和溴离子(Br−)作为自由基清除剂,抑制活性羟基自由基(HO•)的形成。值得注意的是,经过60分钟的紫外照射,TDCPP中89%的总有机碳(TOC)被去除,表明矿化成二氧化碳和水。采用超高效液相色谱(UHPLC)对降解中间体进行分析,处理10 min后鉴定出两种副产物。急性和慢性毒性分析显示,TDCPP的中间体无毒。密度泛函理论(DFT)计算提供了对电子结构和退化途径的见解。本研究有助于制定减轻TDCPP等危险阻燃剂对环境影响的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid Tris(1,3-dichloropropyl) Phosphate Degradation and Detoxification via TiO2 Nanoparticles under UV Light: Kinetics and Mechanism, Environmental Implications, and Insights into DFT

The widespread use of tris(1,3-dichloropropyl) phosphate (TDCPP), a phosphorus flame retardant, has raised significant environmental concerns because of its persistence and toxicity. This study examines the photodegradation of TDCPP (0.25 mg/L) using titanium dioxide (TiO2) nanoparticles (P25 NPs) (50 mg/L) under UV irradiation, focusing on the effects of electrolytes, such as NaCl and NaBr, pH, and temperature. TiO2 NPs degraded TDCPP within 60 min, achieving nearly complete mineralization and release of chloride ions (Cl−). The degradation rate decreased with higher initial TDCPP concentrations but increased with higher TiO2 dosages. Acidic conditions enhanced photodegradation, while the presence of electrolytes caused nanoparticle aggregation, increasing the particle size and reducing the photocatalytic efficiency. Chloride (Cl−) and bromide ions (Br−) acted as radical scavengers, inhibiting the formation of reactive hydroxyl radicals (HO•). Notably, 89% of the total organic carbon (TOC) was eliminated from TDCPP after 60 min of UV illumination, indicating mineralization into carbon dioxide and water. The degradation intermediates were analyzed using ultrahigh-performance liquid chromatography (UHPLC), and two byproducts were identified after 10 min of treatment. Acute and chronic toxicity analyses revealed that TDCPP’s intermediates were nontoxic. Density functional theory (DFT) calculations provide insights into electronic structures and degradation pathways. This research contributes to strategies for mitigating the environmental impact of hazardous flame retardants such as TDCPP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信