Ming Chang, Tesfaye Abebe Geleta, Hong-Jhang Chen and Yang-hsin Shih*,
{"title":"紫外光下TiO2纳米颗粒对三磷酸(1,3-二氯丙基)磷酸盐的快速降解和解毒:动力学和机制,环境影响,以及对DFT的见解","authors":"Ming Chang, Tesfaye Abebe Geleta, Hong-Jhang Chen and Yang-hsin Shih*, ","doi":"10.1021/acsagscitech.5c00177","DOIUrl":null,"url":null,"abstract":"<p >The widespread use of tris(1,3-dichloropropyl) phosphate (TDCPP), a phosphorus flame retardant, has raised significant environmental concerns because of its persistence and toxicity. This study examines the photodegradation of TDCPP (0.25 mg/L) using titanium dioxide (TiO<sub>2</sub>) nanoparticles (P25 NPs) (50 mg/L) under UV irradiation, focusing on the effects of electrolytes, such as NaCl and NaBr, pH, and temperature. TiO<sub>2</sub> NPs degraded TDCPP within 60 min, achieving nearly complete mineralization and release of chloride ions (Cl−). The degradation rate decreased with higher initial TDCPP concentrations but increased with higher TiO<sub>2</sub> dosages. Acidic conditions enhanced photodegradation, while the presence of electrolytes caused nanoparticle aggregation, increasing the particle size and reducing the photocatalytic efficiency. Chloride (Cl−) and bromide ions (Br−) acted as radical scavengers, inhibiting the formation of reactive hydroxyl radicals (HO•). Notably, 89% of the total organic carbon (TOC) was eliminated from TDCPP after 60 min of UV illumination, indicating mineralization into carbon dioxide and water. The degradation intermediates were analyzed using ultrahigh-performance liquid chromatography (UHPLC), and two byproducts were identified after 10 min of treatment. Acute and chronic toxicity analyses revealed that TDCPP’s intermediates were nontoxic. Density functional theory (DFT) calculations provide insights into electronic structures and degradation pathways. This research contributes to strategies for mitigating the environmental impact of hazardous flame retardants such as TDCPP.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"5 7","pages":"1400–1412"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsagscitech.5c00177","citationCount":"0","resultStr":"{\"title\":\"Rapid Tris(1,3-dichloropropyl) Phosphate Degradation and Detoxification via TiO2 Nanoparticles under UV Light: Kinetics and Mechanism, Environmental Implications, and Insights into DFT\",\"authors\":\"Ming Chang, Tesfaye Abebe Geleta, Hong-Jhang Chen and Yang-hsin Shih*, \",\"doi\":\"10.1021/acsagscitech.5c00177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The widespread use of tris(1,3-dichloropropyl) phosphate (TDCPP), a phosphorus flame retardant, has raised significant environmental concerns because of its persistence and toxicity. This study examines the photodegradation of TDCPP (0.25 mg/L) using titanium dioxide (TiO<sub>2</sub>) nanoparticles (P25 NPs) (50 mg/L) under UV irradiation, focusing on the effects of electrolytes, such as NaCl and NaBr, pH, and temperature. TiO<sub>2</sub> NPs degraded TDCPP within 60 min, achieving nearly complete mineralization and release of chloride ions (Cl−). The degradation rate decreased with higher initial TDCPP concentrations but increased with higher TiO<sub>2</sub> dosages. Acidic conditions enhanced photodegradation, while the presence of electrolytes caused nanoparticle aggregation, increasing the particle size and reducing the photocatalytic efficiency. Chloride (Cl−) and bromide ions (Br−) acted as radical scavengers, inhibiting the formation of reactive hydroxyl radicals (HO•). Notably, 89% of the total organic carbon (TOC) was eliminated from TDCPP after 60 min of UV illumination, indicating mineralization into carbon dioxide and water. The degradation intermediates were analyzed using ultrahigh-performance liquid chromatography (UHPLC), and two byproducts were identified after 10 min of treatment. Acute and chronic toxicity analyses revealed that TDCPP’s intermediates were nontoxic. Density functional theory (DFT) calculations provide insights into electronic structures and degradation pathways. This research contributes to strategies for mitigating the environmental impact of hazardous flame retardants such as TDCPP.</p>\",\"PeriodicalId\":93846,\"journal\":{\"name\":\"ACS agricultural science & technology\",\"volume\":\"5 7\",\"pages\":\"1400–1412\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsagscitech.5c00177\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS agricultural science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsagscitech.5c00177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS agricultural science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsagscitech.5c00177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Rapid Tris(1,3-dichloropropyl) Phosphate Degradation and Detoxification via TiO2 Nanoparticles under UV Light: Kinetics and Mechanism, Environmental Implications, and Insights into DFT
The widespread use of tris(1,3-dichloropropyl) phosphate (TDCPP), a phosphorus flame retardant, has raised significant environmental concerns because of its persistence and toxicity. This study examines the photodegradation of TDCPP (0.25 mg/L) using titanium dioxide (TiO2) nanoparticles (P25 NPs) (50 mg/L) under UV irradiation, focusing on the effects of electrolytes, such as NaCl and NaBr, pH, and temperature. TiO2 NPs degraded TDCPP within 60 min, achieving nearly complete mineralization and release of chloride ions (Cl−). The degradation rate decreased with higher initial TDCPP concentrations but increased with higher TiO2 dosages. Acidic conditions enhanced photodegradation, while the presence of electrolytes caused nanoparticle aggregation, increasing the particle size and reducing the photocatalytic efficiency. Chloride (Cl−) and bromide ions (Br−) acted as radical scavengers, inhibiting the formation of reactive hydroxyl radicals (HO•). Notably, 89% of the total organic carbon (TOC) was eliminated from TDCPP after 60 min of UV illumination, indicating mineralization into carbon dioxide and water. The degradation intermediates were analyzed using ultrahigh-performance liquid chromatography (UHPLC), and two byproducts were identified after 10 min of treatment. Acute and chronic toxicity analyses revealed that TDCPP’s intermediates were nontoxic. Density functional theory (DFT) calculations provide insights into electronic structures and degradation pathways. This research contributes to strategies for mitigating the environmental impact of hazardous flame retardants such as TDCPP.