非晶态Ge-Te二元体系阈值开关行为的组分依赖泛函性

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shogo Hatayama*, Kentaro Saito and Jun Usami, 
{"title":"非晶态Ge-Te二元体系阈值开关行为的组分依赖泛函性","authors":"Shogo Hatayama*,&nbsp;Kentaro Saito and Jun Usami,&nbsp;","doi":"10.1021/acsaelm.5c00565","DOIUrl":null,"url":null,"abstract":"<p >Amorphous chalcogenides, including Ge–Te binary system, exhibit distinct threshold switching behaviors essential for memory and selector applications. This study explores the threshold switching mechanisms in Te-rich Ge–Te compositions, systematically identifying key factors differentiating ovonic threshold switching (OTS) from phase change memory (PCM) functionality. Experimental results reveal that Te-rich compositions exhibit OTS behavior, characterized by reversible resistive switching at threshold voltages ranging from 1.2 to 1.6 V. In contrast, compositions near stoichiometric (GeTe) display PCM behavior, undergoing irreversible crystallization at a higher threshold voltage (∼5.0 V). Optical and electrical measurements correlate these behaviors with variations in band gap and trap depth. Our findings indicate that the difference in functionality is reflected in the relative position of the Fermi level with respect to the conduction band minimum: OTS materials exhibit deeper trap states, while PCM compositions have shallower trap states. This insight into the electronic structure provides a foundation for optimizing material properties to enhance the performance of next-generation memory and selector devices.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 12","pages":"5577–5582"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composition-Dependent Functionality of Threshold Switching Behavior in Amorphous Ge–Te Binary System\",\"authors\":\"Shogo Hatayama*,&nbsp;Kentaro Saito and Jun Usami,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c00565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Amorphous chalcogenides, including Ge–Te binary system, exhibit distinct threshold switching behaviors essential for memory and selector applications. This study explores the threshold switching mechanisms in Te-rich Ge–Te compositions, systematically identifying key factors differentiating ovonic threshold switching (OTS) from phase change memory (PCM) functionality. Experimental results reveal that Te-rich compositions exhibit OTS behavior, characterized by reversible resistive switching at threshold voltages ranging from 1.2 to 1.6 V. In contrast, compositions near stoichiometric (GeTe) display PCM behavior, undergoing irreversible crystallization at a higher threshold voltage (∼5.0 V). Optical and electrical measurements correlate these behaviors with variations in band gap and trap depth. Our findings indicate that the difference in functionality is reflected in the relative position of the Fermi level with respect to the conduction band minimum: OTS materials exhibit deeper trap states, while PCM compositions have shallower trap states. This insight into the electronic structure provides a foundation for optimizing material properties to enhance the performance of next-generation memory and selector devices.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 12\",\"pages\":\"5577–5582\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c00565\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c00565","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

非晶硫族化合物,包括Ge-Te二元体系,在存储器和选择器应用中表现出不同的阈值开关行为。本研究探讨了富te Ge-Te组合物的阈值开关机制,系统地识别了区分卵细胞阈值开关(OTS)和相变记忆(PCM)功能的关键因素。实验结果表明,富te化合物表现出OTS行为,在阈值电压1.2 ~ 1.6 V范围内具有可逆电阻开关特性。相比之下,接近化学计量的成分(GeTe)显示PCM行为,在更高的阈值电压(~ 5.0 V)下进行不可逆结晶。光学和电学测量将这些行为与带隙和陷阱深度的变化联系起来。我们的研究结果表明,功能上的差异反映在费米能级相对于导带最小值的相对位置上:OTS材料表现出更深的陷阱状态,而PCM成分具有更浅的陷阱状态。这种对电子结构的洞察为优化材料性能以提高下一代存储器和选择器器件的性能提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Composition-Dependent Functionality of Threshold Switching Behavior in Amorphous Ge–Te Binary System

Composition-Dependent Functionality of Threshold Switching Behavior in Amorphous Ge–Te Binary System

Amorphous chalcogenides, including Ge–Te binary system, exhibit distinct threshold switching behaviors essential for memory and selector applications. This study explores the threshold switching mechanisms in Te-rich Ge–Te compositions, systematically identifying key factors differentiating ovonic threshold switching (OTS) from phase change memory (PCM) functionality. Experimental results reveal that Te-rich compositions exhibit OTS behavior, characterized by reversible resistive switching at threshold voltages ranging from 1.2 to 1.6 V. In contrast, compositions near stoichiometric (GeTe) display PCM behavior, undergoing irreversible crystallization at a higher threshold voltage (∼5.0 V). Optical and electrical measurements correlate these behaviors with variations in band gap and trap depth. Our findings indicate that the difference in functionality is reflected in the relative position of the Fermi level with respect to the conduction band minimum: OTS materials exhibit deeper trap states, while PCM compositions have shallower trap states. This insight into the electronic structure provides a foundation for optimizing material properties to enhance the performance of next-generation memory and selector devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信