添加介孔生物活性玻璃纳米颗粒的分区微通道纤维中的协同物理和化学线索增强细胞化

IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sara Cristina Pedroza-González, Martha Patricia Pérez González, Andrea Florencia Ochoa Tiscareño, Priscila Torres Acosta, Regina Elizabeth Vargas Mejía, Nicolás Antonio Ulloa Castillo, Maritza Iveth Pérez Valverde, Francisco Javier Sierra Valdez, Aldo R. Boccaccini, Mario Moisés Alvarez* and Grissel Trujillo-de Santiago*, 
{"title":"添加介孔生物活性玻璃纳米颗粒的分区微通道纤维中的协同物理和化学线索增强细胞化","authors":"Sara Cristina Pedroza-González,&nbsp;Martha Patricia Pérez González,&nbsp;Andrea Florencia Ochoa Tiscareño,&nbsp;Priscila Torres Acosta,&nbsp;Regina Elizabeth Vargas Mejía,&nbsp;Nicolás Antonio Ulloa Castillo,&nbsp;Maritza Iveth Pérez Valverde,&nbsp;Francisco Javier Sierra Valdez,&nbsp;Aldo R. Boccaccini,&nbsp;Mario Moisés Alvarez* and Grissel Trujillo-de Santiago*,&nbsp;","doi":"10.1021/acsmaterialslett.5c00250","DOIUrl":null,"url":null,"abstract":"<p >The internal cellularization of thick tissue scaffolds remains a significant challenge in tissue engineering, often requiring costly and complex technologies. In this study, we developed a cost-effective, chaotic printing approach to fabricate compartmentalized hydrogel filaments that integrate physical and chemical cues. The physical cues, provided by hollow microchannels, enhance mass transport and nutrient exchange, while the chemical cues, delivered by mesoporous bioactive glass (BG) nanoparticles, facilitate sustained ion release, which can potentially support angiogenesis and cell migration. Characterization of the filaments demonstrated their structural integrity, controlled ion diffusion, and biocompatibility. In an <i>ex ovo</i> chick embryo model, the scaffolds supported cellularization and showed indications of promoting vascularization. This platform represents a promising step toward the development of functional scaffolds for applications in wound healing, <i>in vitro</i> models, and small tissue unit transplantation.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 8","pages":"2765–2775"},"PeriodicalIF":8.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Physical and Chemical Cues Enhance Cellularization in Compartmentalized Microchannel Fibers Supplemented with Mesoporous Bioactive Glass Nanoparticles\",\"authors\":\"Sara Cristina Pedroza-González,&nbsp;Martha Patricia Pérez González,&nbsp;Andrea Florencia Ochoa Tiscareño,&nbsp;Priscila Torres Acosta,&nbsp;Regina Elizabeth Vargas Mejía,&nbsp;Nicolás Antonio Ulloa Castillo,&nbsp;Maritza Iveth Pérez Valverde,&nbsp;Francisco Javier Sierra Valdez,&nbsp;Aldo R. Boccaccini,&nbsp;Mario Moisés Alvarez* and Grissel Trujillo-de Santiago*,&nbsp;\",\"doi\":\"10.1021/acsmaterialslett.5c00250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The internal cellularization of thick tissue scaffolds remains a significant challenge in tissue engineering, often requiring costly and complex technologies. In this study, we developed a cost-effective, chaotic printing approach to fabricate compartmentalized hydrogel filaments that integrate physical and chemical cues. The physical cues, provided by hollow microchannels, enhance mass transport and nutrient exchange, while the chemical cues, delivered by mesoporous bioactive glass (BG) nanoparticles, facilitate sustained ion release, which can potentially support angiogenesis and cell migration. Characterization of the filaments demonstrated their structural integrity, controlled ion diffusion, and biocompatibility. In an <i>ex ovo</i> chick embryo model, the scaffolds supported cellularization and showed indications of promoting vascularization. This platform represents a promising step toward the development of functional scaffolds for applications in wound healing, <i>in vitro</i> models, and small tissue unit transplantation.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 8\",\"pages\":\"2765–2775\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00250\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00250","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

厚组织支架的内部细胞化仍然是组织工程中的一个重大挑战,通常需要昂贵和复杂的技术。在这项研究中,我们开发了一种具有成本效益的混沌打印方法来制造集物理和化学线索于一体的分区水凝胶细丝。由中空微通道提供的物理信号增强了质量运输和营养物质交换,而由介孔生物活性玻璃(BG)纳米颗粒提供的化学信号促进了离子的持续释放,从而可能支持血管生成和细胞迁移。纤维的表征表明其结构完整,离子扩散可控,生物相容性好。在卵生鸡胚胎模型中,支架支持细胞化并显示出促进血管形成的迹象。该平台代表了功能性支架在伤口愈合、体外模型和小组织单元移植方面应用的有希望的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic Physical and Chemical Cues Enhance Cellularization in Compartmentalized Microchannel Fibers Supplemented with Mesoporous Bioactive Glass Nanoparticles

Synergistic Physical and Chemical Cues Enhance Cellularization in Compartmentalized Microchannel Fibers Supplemented with Mesoporous Bioactive Glass Nanoparticles

The internal cellularization of thick tissue scaffolds remains a significant challenge in tissue engineering, often requiring costly and complex technologies. In this study, we developed a cost-effective, chaotic printing approach to fabricate compartmentalized hydrogel filaments that integrate physical and chemical cues. The physical cues, provided by hollow microchannels, enhance mass transport and nutrient exchange, while the chemical cues, delivered by mesoporous bioactive glass (BG) nanoparticles, facilitate sustained ion release, which can potentially support angiogenesis and cell migration. Characterization of the filaments demonstrated their structural integrity, controlled ion diffusion, and biocompatibility. In an ex ovo chick embryo model, the scaffolds supported cellularization and showed indications of promoting vascularization. This platform represents a promising step toward the development of functional scaffolds for applications in wound healing, in vitro models, and small tissue unit transplantation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信