基于液相剥离的TiS2/多壁碳纳米管纳米复合材料用于高保留对称超级电容器

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Riya Malik, Pooja Semalti, Megha Rana, Vidya Nand Singh, Suraj P. Khanna, Ritu Srivastava* and Chandra Kant Suman*, 
{"title":"基于液相剥离的TiS2/多壁碳纳米管纳米复合材料用于高保留对称超级电容器","authors":"Riya Malik,&nbsp;Pooja Semalti,&nbsp;Megha Rana,&nbsp;Vidya Nand Singh,&nbsp;Suraj P. Khanna,&nbsp;Ritu Srivastava* and Chandra Kant Suman*,&nbsp;","doi":"10.1021/acsanm.5c02481","DOIUrl":null,"url":null,"abstract":"<p >Exfoliated titanium disulfide (TiS<sub>2</sub>) shows promising behavior for energy conversion and storage. Liquid-phase exfoliation (LPE) is one of the effective techniques employed to obtain exfoliated nanosheets of TiS<sub>2</sub>. These nanosheets are then hybridized with multiwall carbon nanotubes (MWCNTs) to form a TiS<sub>2</sub>/MWCNT nanocomposite (NC) using the same LPE technique. This TiS<sub>2</sub>/MWCNT nanocomposite electrode fabricated on Ni foam (NF) shows the highest specific capacitance of 1547.2 F/g at a scan rate of 10 mV/s compared to earlier reported TiS<sub>2</sub> electrodes. The maximum energy density of this electrode is 42.5 Wh/kg at a current density of 3 A/g. The high specific capacitance of the nanocomposite could be attributed to the molecular synergy of the faradaic and nonfaradaic mechanisms of TiS<sub>2</sub> and MWCNT, respectively. When assembled in a symmetric device of NF/NC/PVA-KOH (3<span>M</span>)/NC/NF, it exhibits a specific capacitance of ∼8.33 F/g with energy and power densities of 2.6 Wh/kg and 337.5 W/kg, respectively. The device displays a capacity retention of 98.2% even after 5000 charge/discharge cycles, which signifies the extraordinary cyclic charge–discharge stability achieved by our designed nanocomposite. This work explicitly demonstrates the industry-level scaling potential of the LPE method used for the processing of TiS<sub>2</sub> for supercapacitor fabrication.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 31","pages":"15536–15546"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid-Phase Exfoliation-Based TiS2/Multiwall Carbon Nanotube Nanocomposites for High Retention Symmetric Supercapacitors\",\"authors\":\"Riya Malik,&nbsp;Pooja Semalti,&nbsp;Megha Rana,&nbsp;Vidya Nand Singh,&nbsp;Suraj P. Khanna,&nbsp;Ritu Srivastava* and Chandra Kant Suman*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c02481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Exfoliated titanium disulfide (TiS<sub>2</sub>) shows promising behavior for energy conversion and storage. Liquid-phase exfoliation (LPE) is one of the effective techniques employed to obtain exfoliated nanosheets of TiS<sub>2</sub>. These nanosheets are then hybridized with multiwall carbon nanotubes (MWCNTs) to form a TiS<sub>2</sub>/MWCNT nanocomposite (NC) using the same LPE technique. This TiS<sub>2</sub>/MWCNT nanocomposite electrode fabricated on Ni foam (NF) shows the highest specific capacitance of 1547.2 F/g at a scan rate of 10 mV/s compared to earlier reported TiS<sub>2</sub> electrodes. The maximum energy density of this electrode is 42.5 Wh/kg at a current density of 3 A/g. The high specific capacitance of the nanocomposite could be attributed to the molecular synergy of the faradaic and nonfaradaic mechanisms of TiS<sub>2</sub> and MWCNT, respectively. When assembled in a symmetric device of NF/NC/PVA-KOH (3<span>M</span>)/NC/NF, it exhibits a specific capacitance of ∼8.33 F/g with energy and power densities of 2.6 Wh/kg and 337.5 W/kg, respectively. The device displays a capacity retention of 98.2% even after 5000 charge/discharge cycles, which signifies the extraordinary cyclic charge–discharge stability achieved by our designed nanocomposite. This work explicitly demonstrates the industry-level scaling potential of the LPE method used for the processing of TiS<sub>2</sub> for supercapacitor fabrication.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 31\",\"pages\":\"15536–15546\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c02481\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c02481","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

脱片状二硫化钛(TiS2)具有良好的能量转换和存储性能。液相剥脱(LPE)是制备脱剥落TiS2纳米片的有效方法之一。然后使用相同的LPE技术将这些纳米片与多壁碳纳米管(MWCNTs)杂交形成TiS2/MWCNT纳米复合材料(NC)。在Ni泡沫(NF)上制备的TiS2/MWCNT纳米复合电极在扫描速率为10 mV/s时,与之前报道的TiS2电极相比,其比电容最高为1547.2 F/g。在电流密度为3a /g时,该电极的最大能量密度为42.5 Wh/kg。纳米复合材料的高比电容可归因于TiS2和MWCNT的法拉第和非法拉第机制的分子协同作用。当在NF/NC/PVA-KOH (3M)/NC/NF对称器件中组装时,它的比电容为~ 8.33 F/g,能量和功率密度分别为2.6 Wh/kg和337.5 W/kg。即使在5000次充放电循环后,该器件也显示出98.2%的容量保持率,这表明我们设计的纳米复合材料实现了非凡的循环充放电稳定性。这项工作明确地证明了用于超级电容器制造的TiS2加工的LPE方法的工业级缩放潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Liquid-Phase Exfoliation-Based TiS2/Multiwall Carbon Nanotube Nanocomposites for High Retention Symmetric Supercapacitors

Liquid-Phase Exfoliation-Based TiS2/Multiwall Carbon Nanotube Nanocomposites for High Retention Symmetric Supercapacitors

Exfoliated titanium disulfide (TiS2) shows promising behavior for energy conversion and storage. Liquid-phase exfoliation (LPE) is one of the effective techniques employed to obtain exfoliated nanosheets of TiS2. These nanosheets are then hybridized with multiwall carbon nanotubes (MWCNTs) to form a TiS2/MWCNT nanocomposite (NC) using the same LPE technique. This TiS2/MWCNT nanocomposite electrode fabricated on Ni foam (NF) shows the highest specific capacitance of 1547.2 F/g at a scan rate of 10 mV/s compared to earlier reported TiS2 electrodes. The maximum energy density of this electrode is 42.5 Wh/kg at a current density of 3 A/g. The high specific capacitance of the nanocomposite could be attributed to the molecular synergy of the faradaic and nonfaradaic mechanisms of TiS2 and MWCNT, respectively. When assembled in a symmetric device of NF/NC/PVA-KOH (3M)/NC/NF, it exhibits a specific capacitance of ∼8.33 F/g with energy and power densities of 2.6 Wh/kg and 337.5 W/kg, respectively. The device displays a capacity retention of 98.2% even after 5000 charge/discharge cycles, which signifies the extraordinary cyclic charge–discharge stability achieved by our designed nanocomposite. This work explicitly demonstrates the industry-level scaling potential of the LPE method used for the processing of TiS2 for supercapacitor fabrication.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信