过渡金属掺杂GaN单层吸附还原性气体(H2, H2S, NH3)的第一性原理研究

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-07-24 DOI:10.1021/acsomega.5c04913
Zebang Wu, Xun Liu, Hongqiang Zhu*, Yi Yan*, Lei Luo, Kaihui Yin, Yuanxia Yue, Ying Yang and Qing Feng, 
{"title":"过渡金属掺杂GaN单层吸附还原性气体(H2, H2S, NH3)的第一性原理研究","authors":"Zebang Wu,&nbsp;Xun Liu,&nbsp;Hongqiang Zhu*,&nbsp;Yi Yan*,&nbsp;Lei Luo,&nbsp;Kaihui Yin,&nbsp;Yuanxia Yue,&nbsp;Ying Yang and Qing Feng,&nbsp;","doi":"10.1021/acsomega.5c04913","DOIUrl":null,"url":null,"abstract":"<p >This paper studies the adsorption energy, differential charge density, work function, energy band, density of states, optical properties, and recovery time of intrinsic GaN and transition metal Ni-doped GaN in adsorbing reducing gases H<sub>2</sub>, H<sub>2</sub>S, and NH<sub>3</sub> based on the first principles. The results show that the adsorption of H<sub>2</sub>, H<sub>2</sub>S, and NH<sub>3</sub> on the intrinsic GaN surface all belongs to physical adsorption. The adsorption of the three gases by Ni-doped GaN is all chemical adsorption, and the adsorption energies are −0.94, −1.45, and −1.41 eV, respectively, making the adsorption more stable. Ni doping enhances the charge transfer between the GaN surface and the gas, reducing the work function and bandgap width of the adsorption system. The maximum absorption coefficient of the doped system in the visible-light range is approximately 30% higher than that of the intrinsic GaN. The recovery times of Ni-doped GaN adsorbing H<sub>2</sub>, H<sub>2</sub>S, and NH<sub>3</sub> can be adjusted to 5.2, 3.4, and 7.2 s, respectively, by controlling the temperature. This study provides theoretical support for the detection and sensing of H<sub>2</sub>, H<sub>2</sub>S, and NH<sub>3</sub> gases based on GaN substrates.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 30","pages":"33806–33813"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c04913","citationCount":"0","resultStr":"{\"title\":\"First-Principles Study of Adsorption of Reductive Gases (H2, H2S, NH3) on a Transition Metal-Doped GaN Monolayer\",\"authors\":\"Zebang Wu,&nbsp;Xun Liu,&nbsp;Hongqiang Zhu*,&nbsp;Yi Yan*,&nbsp;Lei Luo,&nbsp;Kaihui Yin,&nbsp;Yuanxia Yue,&nbsp;Ying Yang and Qing Feng,&nbsp;\",\"doi\":\"10.1021/acsomega.5c04913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This paper studies the adsorption energy, differential charge density, work function, energy band, density of states, optical properties, and recovery time of intrinsic GaN and transition metal Ni-doped GaN in adsorbing reducing gases H<sub>2</sub>, H<sub>2</sub>S, and NH<sub>3</sub> based on the first principles. The results show that the adsorption of H<sub>2</sub>, H<sub>2</sub>S, and NH<sub>3</sub> on the intrinsic GaN surface all belongs to physical adsorption. The adsorption of the three gases by Ni-doped GaN is all chemical adsorption, and the adsorption energies are −0.94, −1.45, and −1.41 eV, respectively, making the adsorption more stable. Ni doping enhances the charge transfer between the GaN surface and the gas, reducing the work function and bandgap width of the adsorption system. The maximum absorption coefficient of the doped system in the visible-light range is approximately 30% higher than that of the intrinsic GaN. The recovery times of Ni-doped GaN adsorbing H<sub>2</sub>, H<sub>2</sub>S, and NH<sub>3</sub> can be adjusted to 5.2, 3.4, and 7.2 s, respectively, by controlling the temperature. This study provides theoretical support for the detection and sensing of H<sub>2</sub>, H<sub>2</sub>S, and NH<sub>3</sub> gases based on GaN substrates.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 30\",\"pages\":\"33806–33813\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c04913\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.5c04913\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c04913","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文基于第一性原理研究了本征氮化镓和过渡金属ni掺杂氮化镓在吸附还原性气体H2、H2S和NH3时的吸附能、微分电荷密度、功函数、能带、态密度、光学性质和恢复时间。结果表明,H2、H2S和NH3在本征氮化镓表面的吸附均属于物理吸附。ni掺杂GaN对三种气体的吸附均为化学吸附,吸附能分别为−0.94、−1.45和−1.41 eV,吸附更加稳定。Ni掺杂增强了氮化镓表面与气体之间的电荷传递,降低了吸附体系的功函数和带隙宽度。在可见光范围内,掺杂体系的最大吸收系数比本征氮化镓高约30%。通过控制温度,可将ni掺杂GaN吸附H2、H2S和NH3的回收时间分别调节为5.2、3.4和7.2 s。本研究为基于GaN衬底的H2、H2S和NH3气体的检测和传感提供了理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-Principles Study of Adsorption of Reductive Gases (H2, H2S, NH3) on a Transition Metal-Doped GaN Monolayer

This paper studies the adsorption energy, differential charge density, work function, energy band, density of states, optical properties, and recovery time of intrinsic GaN and transition metal Ni-doped GaN in adsorbing reducing gases H2, H2S, and NH3 based on the first principles. The results show that the adsorption of H2, H2S, and NH3 on the intrinsic GaN surface all belongs to physical adsorption. The adsorption of the three gases by Ni-doped GaN is all chemical adsorption, and the adsorption energies are −0.94, −1.45, and −1.41 eV, respectively, making the adsorption more stable. Ni doping enhances the charge transfer between the GaN surface and the gas, reducing the work function and bandgap width of the adsorption system. The maximum absorption coefficient of the doped system in the visible-light range is approximately 30% higher than that of the intrinsic GaN. The recovery times of Ni-doped GaN adsorbing H2, H2S, and NH3 can be adjusted to 5.2, 3.4, and 7.2 s, respectively, by controlling the temperature. This study provides theoretical support for the detection and sensing of H2, H2S, and NH3 gases based on GaN substrates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信