超长循环高压钾电池阴离子/阳离子协同增强电极/电解质界面的离子液体电解质工程

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Fei Zhang, Xingchao Wang*, Miaomiao Wu, Yong Guo, Yudi Li, Aikai Yang, Jixi Guo* and Dianzeng Jia*, 
{"title":"超长循环高压钾电池阴离子/阳离子协同增强电极/电解质界面的离子液体电解质工程","authors":"Fei Zhang,&nbsp;Xingchao Wang*,&nbsp;Miaomiao Wu,&nbsp;Yong Guo,&nbsp;Yudi Li,&nbsp;Aikai Yang,&nbsp;Jixi Guo* and Dianzeng Jia*,&nbsp;","doi":"10.1021/acsenergylett.5c01614","DOIUrl":null,"url":null,"abstract":"<p >The pursuit of safe high-energy potassium batteries (PBs) encounters critical challenges stemming from unstable interphases at both the anode and cathode and flammable electrolytes. Herein, we engineered a nonflammable ionic liquid (IL) electrolyte that revolutionizes interfacial chemistry through bidirectional anion–cation coordination. This distinctive solvation structure drives the spontaneous formation of inorganic-dominated solid-electrolyte interphase (SEI) and cathode-electrolyte interphase (CEI), enabling dendrite-free K anodes (98.0% Coulomb efficiency over 800 cycles in K//Cu cell, 4800 h ultralong cycling in K//K symmetric cell) and high-voltage Prussian blue cathodes (stable operation at 4.6 V for 2200 cycles). The synergy between FSI<sup>–</sup> decomposition and PY13<sup>+</sup> electrostatic shielding yields an ultrastable graphite//Prussian blue analogue (PBA) full-battery configuration, achieving a record energy density of 148.5 Wh kg<sup>–1</sup> with exceptional cyclability exceeding 3600 cycles, outperforming state-of-the-art systems. This work presents a new design concept for nonflammable, long-cycling, high-energy PBs.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 8","pages":"3857–3865"},"PeriodicalIF":18.2000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anion/Cation Synergy-Reinforced Electrode/Electrolyte Interphases via Ionic Liquid Electrolyte Engineering for Ultralong Cycling High-Voltage Potassium Batteries\",\"authors\":\"Fei Zhang,&nbsp;Xingchao Wang*,&nbsp;Miaomiao Wu,&nbsp;Yong Guo,&nbsp;Yudi Li,&nbsp;Aikai Yang,&nbsp;Jixi Guo* and Dianzeng Jia*,&nbsp;\",\"doi\":\"10.1021/acsenergylett.5c01614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The pursuit of safe high-energy potassium batteries (PBs) encounters critical challenges stemming from unstable interphases at both the anode and cathode and flammable electrolytes. Herein, we engineered a nonflammable ionic liquid (IL) electrolyte that revolutionizes interfacial chemistry through bidirectional anion–cation coordination. This distinctive solvation structure drives the spontaneous formation of inorganic-dominated solid-electrolyte interphase (SEI) and cathode-electrolyte interphase (CEI), enabling dendrite-free K anodes (98.0% Coulomb efficiency over 800 cycles in K//Cu cell, 4800 h ultralong cycling in K//K symmetric cell) and high-voltage Prussian blue cathodes (stable operation at 4.6 V for 2200 cycles). The synergy between FSI<sup>–</sup> decomposition and PY13<sup>+</sup> electrostatic shielding yields an ultrastable graphite//Prussian blue analogue (PBA) full-battery configuration, achieving a record energy density of 148.5 Wh kg<sup>–1</sup> with exceptional cyclability exceeding 3600 cycles, outperforming state-of-the-art systems. This work presents a new design concept for nonflammable, long-cycling, high-energy PBs.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"10 8\",\"pages\":\"3857–3865\"},\"PeriodicalIF\":18.2000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.5c01614\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.5c01614","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

追求安全的高能钾电池(PBs)面临着来自阳极和阴极界面不稳定以及易燃电解质的严峻挑战。在此,我们设计了一种不易燃的离子液体(IL)电解质,通过双向阴离子-阳离子配位彻底改变了界面化学。这种独特的溶剂化结构驱动无机为主的固体电解质间相(SEI)和阴极电解质间相(CEI)的自发形成,使无枝晶K阳极(K//Cu电池中800个循环中98.0%的库仑效率,K//K对称电池中4800小时的超长循环)和高压普鲁士蓝阴极(在4.6 V下稳定工作2200个循环)成为可能。FSI -分解和PY13+静电屏蔽之间的协同作用产生了超稳定的石墨//普鲁士蓝模拟物(PBA)全电池配置,实现了148.5 Wh kg-1的创纪录能量密度,具有超过3600次循环的卓越可循环性,优于最先进的系统。这项工作提出了一种不易燃、长循环、高能PBs的新设计概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anion/Cation Synergy-Reinforced Electrode/Electrolyte Interphases via Ionic Liquid Electrolyte Engineering for Ultralong Cycling High-Voltage Potassium Batteries

Anion/Cation Synergy-Reinforced Electrode/Electrolyte Interphases via Ionic Liquid Electrolyte Engineering for Ultralong Cycling High-Voltage Potassium Batteries

The pursuit of safe high-energy potassium batteries (PBs) encounters critical challenges stemming from unstable interphases at both the anode and cathode and flammable electrolytes. Herein, we engineered a nonflammable ionic liquid (IL) electrolyte that revolutionizes interfacial chemistry through bidirectional anion–cation coordination. This distinctive solvation structure drives the spontaneous formation of inorganic-dominated solid-electrolyte interphase (SEI) and cathode-electrolyte interphase (CEI), enabling dendrite-free K anodes (98.0% Coulomb efficiency over 800 cycles in K//Cu cell, 4800 h ultralong cycling in K//K symmetric cell) and high-voltage Prussian blue cathodes (stable operation at 4.6 V for 2200 cycles). The synergy between FSI decomposition and PY13+ electrostatic shielding yields an ultrastable graphite//Prussian blue analogue (PBA) full-battery configuration, achieving a record energy density of 148.5 Wh kg–1 with exceptional cyclability exceeding 3600 cycles, outperforming state-of-the-art systems. This work presents a new design concept for nonflammable, long-cycling, high-energy PBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信