界面工程fe -氨基clay/g-C3N4异质结用于高效NADH再生和甲醇生产

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ke Wang, Biaobiao Ma, Shiyong Sun*, Xueyan Zhang, Sen Lin and Haoming Tang, 
{"title":"界面工程fe -氨基clay/g-C3N4异质结用于高效NADH再生和甲醇生产","authors":"Ke Wang,&nbsp;Biaobiao Ma,&nbsp;Shiyong Sun*,&nbsp;Xueyan Zhang,&nbsp;Sen Lin and Haoming Tang,&nbsp;","doi":"10.1021/acssuschemeng.5c03376","DOIUrl":null,"url":null,"abstract":"<p >The high cost of nicotinamide adenine dinucleotide (NADH) severely limits its industrial application. The present study addresses this challenge by developing a two-dimensional (2D)/2D Fe-aminoclay/g-C<sub>3</sub>N<sub>4</sub> heterojunction photocatalyst (FeAC/g-C<sub>3</sub>N<sub>4</sub>) through an innovative nonsemiconductor cocatalyst mediation strategy. Critically, unlike conventional semiconductor cocatalysts, Fe-aminoclay (FeAC) eliminates competitive light absorption while simultaneously providing three interconnected advantages: intimate face-to-face interfacial contact enabling shortened electron transport distances that promote electron transfer and migration, embedded Fe<sup>3+</sup>/Fe<sup>2+</sup> redox centers acting as efficient electron traps to suppress electron–hole recombination, and inherent biocompatibility enabling direct enzyme coupling. Systematic characterization demonstrates enhanced light-harvesting capability and accelerated electron-transfer efficiency in the FeAC/g-C<sub>3</sub>N<sub>4</sub> heterostructure compared to those of pristine g-C<sub>3</sub>N<sub>4</sub>, collectively achieving an 80.79% NADH regeneration efficiency. Furthermore, practical utility is demonstrated through continuous enzymatic methanol synthesis <i>via</i> yeast alcohol dehydrogenase integration, maintaining a stable production over multiple cycles. These findings provide crucial design principles for developing efficient and integrated artificial photosynthetic systems for sustainable chemical synthesis.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 29","pages":"11446–11457"},"PeriodicalIF":7.3000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial-Engineered Fe-Aminoclay/g-C3N4 Heterojunction for Efficient NADH Regeneration and Methanol Production\",\"authors\":\"Ke Wang,&nbsp;Biaobiao Ma,&nbsp;Shiyong Sun*,&nbsp;Xueyan Zhang,&nbsp;Sen Lin and Haoming Tang,&nbsp;\",\"doi\":\"10.1021/acssuschemeng.5c03376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The high cost of nicotinamide adenine dinucleotide (NADH) severely limits its industrial application. The present study addresses this challenge by developing a two-dimensional (2D)/2D Fe-aminoclay/g-C<sub>3</sub>N<sub>4</sub> heterojunction photocatalyst (FeAC/g-C<sub>3</sub>N<sub>4</sub>) through an innovative nonsemiconductor cocatalyst mediation strategy. Critically, unlike conventional semiconductor cocatalysts, Fe-aminoclay (FeAC) eliminates competitive light absorption while simultaneously providing three interconnected advantages: intimate face-to-face interfacial contact enabling shortened electron transport distances that promote electron transfer and migration, embedded Fe<sup>3+</sup>/Fe<sup>2+</sup> redox centers acting as efficient electron traps to suppress electron–hole recombination, and inherent biocompatibility enabling direct enzyme coupling. Systematic characterization demonstrates enhanced light-harvesting capability and accelerated electron-transfer efficiency in the FeAC/g-C<sub>3</sub>N<sub>4</sub> heterostructure compared to those of pristine g-C<sub>3</sub>N<sub>4</sub>, collectively achieving an 80.79% NADH regeneration efficiency. Furthermore, practical utility is demonstrated through continuous enzymatic methanol synthesis <i>via</i> yeast alcohol dehydrogenase integration, maintaining a stable production over multiple cycles. These findings provide crucial design principles for developing efficient and integrated artificial photosynthetic systems for sustainable chemical synthesis.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 29\",\"pages\":\"11446–11457\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c03376\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c03376","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

烟酰胺腺嘌呤二核苷酸(NADH)的高成本严重限制了其工业应用。本研究通过一种创新的非半导体助催化剂中介策略,开发了二维(2D)/二维fe -氨基clay/g-C3N4异质结光催化剂(FeAC/g-C3N4),解决了这一挑战。关键的是,与传统的半导体共催化剂不同,fe -氨基clay (FeAC)消除了竞争性光吸收,同时提供了三个相互关联的优势:亲密的面对面界面接触能够缩短电子传递距离,促进电子转移和迁移,嵌入的Fe3+/Fe2+氧化还原中心作为有效的电子陷阱抑制电子-空穴重组,以及固有的生物相容性能够实现直接酶偶联。系统表征表明,与原始g-C3N4相比,FeAC/g-C3N4异质结构的光捕获能力增强,电子转移效率加快,NADH再生效率达到80.79%。此外,通过酵母酒精脱氢酶整合的连续酶促甲醇合成,在多个循环中保持稳定的生产,证明了实际效用。这些发现为开发高效和综合的人工光合系统提供了重要的设计原则,以实现可持续的化学合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interfacial-Engineered Fe-Aminoclay/g-C3N4 Heterojunction for Efficient NADH Regeneration and Methanol Production

Interfacial-Engineered Fe-Aminoclay/g-C3N4 Heterojunction for Efficient NADH Regeneration and Methanol Production

The high cost of nicotinamide adenine dinucleotide (NADH) severely limits its industrial application. The present study addresses this challenge by developing a two-dimensional (2D)/2D Fe-aminoclay/g-C3N4 heterojunction photocatalyst (FeAC/g-C3N4) through an innovative nonsemiconductor cocatalyst mediation strategy. Critically, unlike conventional semiconductor cocatalysts, Fe-aminoclay (FeAC) eliminates competitive light absorption while simultaneously providing three interconnected advantages: intimate face-to-face interfacial contact enabling shortened electron transport distances that promote electron transfer and migration, embedded Fe3+/Fe2+ redox centers acting as efficient electron traps to suppress electron–hole recombination, and inherent biocompatibility enabling direct enzyme coupling. Systematic characterization demonstrates enhanced light-harvesting capability and accelerated electron-transfer efficiency in the FeAC/g-C3N4 heterostructure compared to those of pristine g-C3N4, collectively achieving an 80.79% NADH regeneration efficiency. Furthermore, practical utility is demonstrated through continuous enzymatic methanol synthesis via yeast alcohol dehydrogenase integration, maintaining a stable production over multiple cycles. These findings provide crucial design principles for developing efficient and integrated artificial photosynthetic systems for sustainable chemical synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信