磁场影响下Co/ mn掺杂RuO2纳米颗粒的高效析氧

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hui Guo, Jin-Hua Liu, Zhi-Han Gao, Zhi Li, Shuai-Jie Wang, Yu-Ze Sun, Zhao-Qing Wang, Wen-Peng Han, Ru Li, Wen-Hua Yang*, Jun Zhang* and Yun-Ze Long*, 
{"title":"磁场影响下Co/ mn掺杂RuO2纳米颗粒的高效析氧","authors":"Hui Guo,&nbsp;Jin-Hua Liu,&nbsp;Zhi-Han Gao,&nbsp;Zhi Li,&nbsp;Shuai-Jie Wang,&nbsp;Yu-Ze Sun,&nbsp;Zhao-Qing Wang,&nbsp;Wen-Peng Han,&nbsp;Ru Li,&nbsp;Wen-Hua Yang*,&nbsp;Jun Zhang* and Yun-Ze Long*,&nbsp;","doi":"10.1021/acsanm.5c02028","DOIUrl":null,"url":null,"abstract":"<p >Developing efficient electrocatalysts is crucial for enhancing green energy conversion. In recent years, magnetic field-assisted electrocatalysis has emerged as a promising approach for significantly enhancing catalytic performance. This paper investigates the oxygen evolution reaction (OER) behavior of Co/Mn-RuO<sub>2</sub>, Co-RuO<sub>2</sub>, and Mn-RuO<sub>2</sub> nano catalysts affected by a magnetic field. The findings suggest that spin polarization kinetics play a key role in improving OER efficiency. Exchange interactions in magnetic catalysts establish spin-selective channels, which contribute to the generation of triplet O<sub>2</sub>. Co/Mn-RuO<sub>2</sub> exhibits an ultrahigh current density and ultralow overpotential (370 mV at 200 mA cm<sup>–2</sup>, an 80 mV reduction compared to OER overpotential without a magnetic field) under a magnetic field, and demonstrates 100 h of stability. Theoretical calculations indicate that spin alignment exhibits a lower energy difference in the rate-determining step compared to the deficiency of a magnetic field. These findings highlight the potential of magnetic field-induced spin polarization in optimizing OER performance and provide important attributions for the systematic design of spin-related catalysts.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 30","pages":"15008–15015"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Oxygen Evolution via Co/Mn-Doped RuO2 Nanoparticles under the Influence of a Magnetic Field\",\"authors\":\"Hui Guo,&nbsp;Jin-Hua Liu,&nbsp;Zhi-Han Gao,&nbsp;Zhi Li,&nbsp;Shuai-Jie Wang,&nbsp;Yu-Ze Sun,&nbsp;Zhao-Qing Wang,&nbsp;Wen-Peng Han,&nbsp;Ru Li,&nbsp;Wen-Hua Yang*,&nbsp;Jun Zhang* and Yun-Ze Long*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c02028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing efficient electrocatalysts is crucial for enhancing green energy conversion. In recent years, magnetic field-assisted electrocatalysis has emerged as a promising approach for significantly enhancing catalytic performance. This paper investigates the oxygen evolution reaction (OER) behavior of Co/Mn-RuO<sub>2</sub>, Co-RuO<sub>2</sub>, and Mn-RuO<sub>2</sub> nano catalysts affected by a magnetic field. The findings suggest that spin polarization kinetics play a key role in improving OER efficiency. Exchange interactions in magnetic catalysts establish spin-selective channels, which contribute to the generation of triplet O<sub>2</sub>. Co/Mn-RuO<sub>2</sub> exhibits an ultrahigh current density and ultralow overpotential (370 mV at 200 mA cm<sup>–2</sup>, an 80 mV reduction compared to OER overpotential without a magnetic field) under a magnetic field, and demonstrates 100 h of stability. Theoretical calculations indicate that spin alignment exhibits a lower energy difference in the rate-determining step compared to the deficiency of a magnetic field. These findings highlight the potential of magnetic field-induced spin polarization in optimizing OER performance and provide important attributions for the systematic design of spin-related catalysts.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 30\",\"pages\":\"15008–15015\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c02028\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c02028","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发高效的电催化剂是促进绿色能源转化的关键。近年来,磁场辅助电催化已成为一种有希望显著提高催化性能的方法。研究了Co/Mn-RuO2、Co- ruo2和Mn-RuO2纳米催化剂在磁场作用下的析氧反应(OER)行为。研究结果表明,自旋极化动力学在提高OER效率中起着关键作用。磁性催化剂中的交换作用建立了自旋选择通道,这有助于生成三重态O2。Co/Mn-RuO2在磁场作用下具有超高电流密度和超低过电位(200 mA cm-2时370 mV,比无磁场时的OER过电位降低80 mV),并具有100 h的稳定性。理论计算表明,与缺乏磁场相比,自旋取向在速率决定步骤中表现出较低的能量差。这些发现突出了磁场诱导自旋极化在优化OER性能方面的潜力,并为自旋相关催化剂的系统设计提供了重要的属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient Oxygen Evolution via Co/Mn-Doped RuO2 Nanoparticles under the Influence of a Magnetic Field

Efficient Oxygen Evolution via Co/Mn-Doped RuO2 Nanoparticles under the Influence of a Magnetic Field

Developing efficient electrocatalysts is crucial for enhancing green energy conversion. In recent years, magnetic field-assisted electrocatalysis has emerged as a promising approach for significantly enhancing catalytic performance. This paper investigates the oxygen evolution reaction (OER) behavior of Co/Mn-RuO2, Co-RuO2, and Mn-RuO2 nano catalysts affected by a magnetic field. The findings suggest that spin polarization kinetics play a key role in improving OER efficiency. Exchange interactions in magnetic catalysts establish spin-selective channels, which contribute to the generation of triplet O2. Co/Mn-RuO2 exhibits an ultrahigh current density and ultralow overpotential (370 mV at 200 mA cm–2, an 80 mV reduction compared to OER overpotential without a magnetic field) under a magnetic field, and demonstrates 100 h of stability. Theoretical calculations indicate that spin alignment exhibits a lower energy difference in the rate-determining step compared to the deficiency of a magnetic field. These findings highlight the potential of magnetic field-induced spin polarization in optimizing OER performance and provide important attributions for the systematic design of spin-related catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信