尺寸-厚度相容性:释放纳米片结合膜的潜力

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qing Fang, Qin Liu, Zongli Xie, Matthew R. Hill and Kaisong Zhang*, 
{"title":"尺寸-厚度相容性:释放纳米片结合膜的潜力","authors":"Qing Fang,&nbsp;Qin Liu,&nbsp;Zongli Xie,&nbsp;Matthew R. Hill and Kaisong Zhang*,&nbsp;","doi":"10.1021/acsanm.5c02530","DOIUrl":null,"url":null,"abstract":"<p >Size-dependent two-dimensional (2D) materials exhibiting permselectivity and structural stability have emerged as promising additives to enhance membrane performance. However, the influence of nanosheet size and its interaction with membrane thickness remain largely unexplored, resulting in a critical gap in the understanding of their contribution to membrane performance. In this study, poly(trimethylsilylpropyne) (PTMSP) membranes incorporating molybdenum sulfide (MoS<sub>2</sub>) nanosheets of varying sizes (300, 600, and 1000 nm) were fabricated on polysulfone (PSf) substrates and tested for organic solvent nanofiltration (OSN). The smaller nanosheets (300 nm) demonstrated superior specific surface area and dispersibility, leading to hybrid membranes with enhanced free volume, electronegativity, and mechanical strength. The optimal membrane (MoS<sub>2</sub>–PTMSP<sub>300–300</sub>) with 2.91 wt % MoS<sub>2</sub> loading achieved a methanol permeance of 8.17 L·m<sup>–2</sup>·h<sup>–1</sup>·bar<sup>–1</sup> and a rejection of 98.65% for rose bengal (RB). In contrast, larger nanosheets (1000 nm) formed parallel alignments, which negatively impacted membrane permeance. Furthermore, the uniform distribution and strong compatibility of smaller nanosheets with the polymer matrix contributed to the long-term stability of the membranes. These findings highlight the pivotal role of nanosheet size in determining membrane performance, and provide valuable insights for the design of nanocomposite membranes with tunable thickness using size-dependent 2D materials.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 29","pages":"14791–14801"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size–Thickness Compatibility: Unlocking the Potential of Nanosheet-Incorporated Membranes\",\"authors\":\"Qing Fang,&nbsp;Qin Liu,&nbsp;Zongli Xie,&nbsp;Matthew R. Hill and Kaisong Zhang*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c02530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Size-dependent two-dimensional (2D) materials exhibiting permselectivity and structural stability have emerged as promising additives to enhance membrane performance. However, the influence of nanosheet size and its interaction with membrane thickness remain largely unexplored, resulting in a critical gap in the understanding of their contribution to membrane performance. In this study, poly(trimethylsilylpropyne) (PTMSP) membranes incorporating molybdenum sulfide (MoS<sub>2</sub>) nanosheets of varying sizes (300, 600, and 1000 nm) were fabricated on polysulfone (PSf) substrates and tested for organic solvent nanofiltration (OSN). The smaller nanosheets (300 nm) demonstrated superior specific surface area and dispersibility, leading to hybrid membranes with enhanced free volume, electronegativity, and mechanical strength. The optimal membrane (MoS<sub>2</sub>–PTMSP<sub>300–300</sub>) with 2.91 wt % MoS<sub>2</sub> loading achieved a methanol permeance of 8.17 L·m<sup>–2</sup>·h<sup>–1</sup>·bar<sup>–1</sup> and a rejection of 98.65% for rose bengal (RB). In contrast, larger nanosheets (1000 nm) formed parallel alignments, which negatively impacted membrane permeance. Furthermore, the uniform distribution and strong compatibility of smaller nanosheets with the polymer matrix contributed to the long-term stability of the membranes. These findings highlight the pivotal role of nanosheet size in determining membrane performance, and provide valuable insights for the design of nanocomposite membranes with tunable thickness using size-dependent 2D materials.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 29\",\"pages\":\"14791–14801\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c02530\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c02530","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尺寸相关的二维(2D)材料具有选择性和结构稳定性,已成为提高膜性能的有前途的添加剂。然而,纳米片尺寸的影响及其与膜厚度的相互作用在很大程度上仍未被探索,导致对它们对膜性能的贡献的理解存在关键空白。在本研究中,在聚砜(PSf)衬底上制备了含有不同尺寸(300、600和1000 nm)硫化钼(MoS2)纳米片的聚三甲基硅丙炔(PTMSP)膜,并对其进行了有机溶剂纳滤(OSN)测试。更小的纳米片(300纳米)表现出优越的比表面积和分散性,导致杂化膜具有增强的自由体积,电负性和机械强度。最佳膜(MoS2 - ptmsp300 - 300)在2.91 wt %的MoS2负载下,甲醇渗透率为8.17 L·m-2·h-1·bar-1,对红玫瑰(RB)的截除率为98.65%。相比之下,较大的纳米片(1000纳米)形成平行排列,这对膜透性有负面影响。此外,较小的纳米片与聚合物基体的均匀分布和强相容性有助于膜的长期稳定性。这些发现强调了纳米片尺寸在决定膜性能中的关键作用,并为使用尺寸相关的二维材料设计具有可调厚度的纳米复合膜提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Size–Thickness Compatibility: Unlocking the Potential of Nanosheet-Incorporated Membranes

Size–Thickness Compatibility: Unlocking the Potential of Nanosheet-Incorporated Membranes

Size-dependent two-dimensional (2D) materials exhibiting permselectivity and structural stability have emerged as promising additives to enhance membrane performance. However, the influence of nanosheet size and its interaction with membrane thickness remain largely unexplored, resulting in a critical gap in the understanding of their contribution to membrane performance. In this study, poly(trimethylsilylpropyne) (PTMSP) membranes incorporating molybdenum sulfide (MoS2) nanosheets of varying sizes (300, 600, and 1000 nm) were fabricated on polysulfone (PSf) substrates and tested for organic solvent nanofiltration (OSN). The smaller nanosheets (300 nm) demonstrated superior specific surface area and dispersibility, leading to hybrid membranes with enhanced free volume, electronegativity, and mechanical strength. The optimal membrane (MoS2–PTMSP300–300) with 2.91 wt % MoS2 loading achieved a methanol permeance of 8.17 L·m–2·h–1·bar–1 and a rejection of 98.65% for rose bengal (RB). In contrast, larger nanosheets (1000 nm) formed parallel alignments, which negatively impacted membrane permeance. Furthermore, the uniform distribution and strong compatibility of smaller nanosheets with the polymer matrix contributed to the long-term stability of the membranes. These findings highlight the pivotal role of nanosheet size in determining membrane performance, and provide valuable insights for the design of nanocomposite membranes with tunable thickness using size-dependent 2D materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信