利用异均醌在水介质中可持续地从空气中捕获二氧化碳

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Maryam Abdinejad*, Mathilde Reffet, Kai-Jher Tan and T. Alan Hatton*, 
{"title":"利用异均醌在水介质中可持续地从空气中捕获二氧化碳","authors":"Maryam Abdinejad*,&nbsp;Mathilde Reffet,&nbsp;Kai-Jher Tan and T. Alan Hatton*,&nbsp;","doi":"10.1021/acssuschemeng.5c03181","DOIUrl":null,"url":null,"abstract":"<p >The urgent need to mitigate rising carbon dioxide (CO<sub>2</sub>) emissions necessitates the development of innovative and sustainable carbon capture technologies. This study introduces a dual-electrode electrochemically mediated CO<sub>2</sub> capture system, employing the heterogenization of the redox-active polymerized benzodithiophene quinone (PBDT-Q) immobilized onto carbon nanotubes (CNTs) to form a PBDT-Q/CNT composite. The heterogenization improves the composite’s structural stability, conductivity, and enabling prolonged operation in an environmentally friendly aqueous medium. We initiated a systematic evaluation with a bulk electrolyzer, demonstrating efficient CO<sub>2</sub> capture and release. Subsequently, we expanded the investigation to a flow-cell system tested with a simulated flue gas mixture containing 13 vol % CO<sub>2</sub> and 3.5 vol % O<sub>2</sub>. The flow-cell system maintained stable performance over 68 cycles spanning 150 h, achieving an average capture rate of approximately 0.21 mmol CO<sub>2</sub> per cycle. These results underscore the scalability and real-world potential of dual-electrode heterogenized quinone-based electrocatalysts, offering a sustainable pathway to advance carbon capture technologies.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 29","pages":"11425–11436"},"PeriodicalIF":7.3000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable Electrochemical CO2 Capture from Air Using Heterogenized Quinones in Aqueous Media\",\"authors\":\"Maryam Abdinejad*,&nbsp;Mathilde Reffet,&nbsp;Kai-Jher Tan and T. Alan Hatton*,&nbsp;\",\"doi\":\"10.1021/acssuschemeng.5c03181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The urgent need to mitigate rising carbon dioxide (CO<sub>2</sub>) emissions necessitates the development of innovative and sustainable carbon capture technologies. This study introduces a dual-electrode electrochemically mediated CO<sub>2</sub> capture system, employing the heterogenization of the redox-active polymerized benzodithiophene quinone (PBDT-Q) immobilized onto carbon nanotubes (CNTs) to form a PBDT-Q/CNT composite. The heterogenization improves the composite’s structural stability, conductivity, and enabling prolonged operation in an environmentally friendly aqueous medium. We initiated a systematic evaluation with a bulk electrolyzer, demonstrating efficient CO<sub>2</sub> capture and release. Subsequently, we expanded the investigation to a flow-cell system tested with a simulated flue gas mixture containing 13 vol % CO<sub>2</sub> and 3.5 vol % O<sub>2</sub>. The flow-cell system maintained stable performance over 68 cycles spanning 150 h, achieving an average capture rate of approximately 0.21 mmol CO<sub>2</sub> per cycle. These results underscore the scalability and real-world potential of dual-electrode heterogenized quinone-based electrocatalysts, offering a sustainable pathway to advance carbon capture technologies.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 29\",\"pages\":\"11425–11436\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c03181\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c03181","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

缓解不断上升的二氧化碳排放的迫切需要要求开发创新和可持续的碳捕获技术。本研究介绍了一种双电极电化学介导的二氧化碳捕获系统,该系统将氧化还原活性聚合苯二噻吩醌(PBDT-Q)异质化固定在碳纳米管(CNTs)上,形成PBDT-Q/CNT复合材料。异质化提高了复合材料的结构稳定性和导电性,并能在环境友好的水介质中长时间运行。我们启动了一个系统的评估与散装电解槽,证明有效的二氧化碳捕获和释放。随后,我们将调查范围扩大到用含有13 vol % CO2和3.5 vol % O2的模拟烟气混合物测试的流电池系统。该液流电池系统在68个循环150小时内保持稳定的性能,每个循环的平均捕集率约为0.21 mmol CO2。这些结果强调了双电极异质醌基电催化剂的可扩展性和现实潜力,为推进碳捕获技术提供了可持续的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sustainable Electrochemical CO2 Capture from Air Using Heterogenized Quinones in Aqueous Media

Sustainable Electrochemical CO2 Capture from Air Using Heterogenized Quinones in Aqueous Media

The urgent need to mitigate rising carbon dioxide (CO2) emissions necessitates the development of innovative and sustainable carbon capture technologies. This study introduces a dual-electrode electrochemically mediated CO2 capture system, employing the heterogenization of the redox-active polymerized benzodithiophene quinone (PBDT-Q) immobilized onto carbon nanotubes (CNTs) to form a PBDT-Q/CNT composite. The heterogenization improves the composite’s structural stability, conductivity, and enabling prolonged operation in an environmentally friendly aqueous medium. We initiated a systematic evaluation with a bulk electrolyzer, demonstrating efficient CO2 capture and release. Subsequently, we expanded the investigation to a flow-cell system tested with a simulated flue gas mixture containing 13 vol % CO2 and 3.5 vol % O2. The flow-cell system maintained stable performance over 68 cycles spanning 150 h, achieving an average capture rate of approximately 0.21 mmol CO2 per cycle. These results underscore the scalability and real-world potential of dual-electrode heterogenized quinone-based electrocatalysts, offering a sustainable pathway to advance carbon capture technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信