利用SnOx包覆层抑制高效半透明钙钛矿太阳能电池超薄金属膜的脱湿

IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yong Cai, Sanwan Liu, Huande Sun, Jianan Wang, Hasan Raza, You Gao, Zonghao Liu* and Wei Chen*, 
{"title":"利用SnOx包覆层抑制高效半透明钙钛矿太阳能电池超薄金属膜的脱湿","authors":"Yong Cai,&nbsp;Sanwan Liu,&nbsp;Huande Sun,&nbsp;Jianan Wang,&nbsp;Hasan Raza,&nbsp;You Gao,&nbsp;Zonghao Liu* and Wei Chen*,&nbsp;","doi":"10.1021/acsmaterialslett.5c00897","DOIUrl":null,"url":null,"abstract":"<p >Ultrathin metal films (UTMFs) are promising electrode candidates for semitransparent perovskite solar cells (St-PSCs). However, deposited UTMFs often exist in metastable or unstable states, leading to dewetting or aggregation at elevated temperatures, which compromises the stability of the St-PSCs. Here, we investigate the stability behavior of UTMFs in St-PSCs during operational conditions and discover that the solid-state dewetting of UTMFs can occur even at room temperature and atmospheric pressure. By introducing an additional tin oxide (SnO<sub><i>x</i></sub>) cladding layer on the top of UTMFs via atomic layer deposition (ALD), the stability of UTMFs and St-PSCs is significantly improved. Our St-PSCs with UTMFs/SnO<sub><i>x</i></sub> electrodes achieve a promising power conversion efficiency (PCE) of 20.1%. Encapsulated devices retain 95% of the initial efficiency after 500 h continuous operation under 1 sun illumination.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 8","pages":"2868–2875"},"PeriodicalIF":8.7000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppressing Dewetting in Ultrathin Metal Films via SnOx Cladding Layer for Efficient Semitransparent Perovskite Solar Cells\",\"authors\":\"Yong Cai,&nbsp;Sanwan Liu,&nbsp;Huande Sun,&nbsp;Jianan Wang,&nbsp;Hasan Raza,&nbsp;You Gao,&nbsp;Zonghao Liu* and Wei Chen*,&nbsp;\",\"doi\":\"10.1021/acsmaterialslett.5c00897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ultrathin metal films (UTMFs) are promising electrode candidates for semitransparent perovskite solar cells (St-PSCs). However, deposited UTMFs often exist in metastable or unstable states, leading to dewetting or aggregation at elevated temperatures, which compromises the stability of the St-PSCs. Here, we investigate the stability behavior of UTMFs in St-PSCs during operational conditions and discover that the solid-state dewetting of UTMFs can occur even at room temperature and atmospheric pressure. By introducing an additional tin oxide (SnO<sub><i>x</i></sub>) cladding layer on the top of UTMFs via atomic layer deposition (ALD), the stability of UTMFs and St-PSCs is significantly improved. Our St-PSCs with UTMFs/SnO<sub><i>x</i></sub> electrodes achieve a promising power conversion efficiency (PCE) of 20.1%. Encapsulated devices retain 95% of the initial efficiency after 500 h continuous operation under 1 sun illumination.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 8\",\"pages\":\"2868–2875\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00897\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00897","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超薄金属薄膜(UTMFs)是半透明钙钛矿太阳能电池(St-PSCs)极具前景的电极候选材料。然而,沉积的utmf通常以亚稳或不稳定状态存在,导致在高温下脱湿或聚集,这损害了st - psc的稳定性。在这里,我们研究了在工作条件下UTMFs在st - psc中的稳定性行为,并发现即使在室温和常压下UTMFs的固态脱湿也会发生。通过原子层沉积(ALD)在UTMFs的顶部额外引入氧化锡(SnOx)包层,显著提高了UTMFs和st - psc的稳定性。我们的st - psc具有utmf /SnOx电极,具有20.1%的功率转换效率(PCE)。封装装置在1个太阳光照下连续运行500小时后,仍能保持95%的初始效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Suppressing Dewetting in Ultrathin Metal Films via SnOx Cladding Layer for Efficient Semitransparent Perovskite Solar Cells

Suppressing Dewetting in Ultrathin Metal Films via SnOx Cladding Layer for Efficient Semitransparent Perovskite Solar Cells

Ultrathin metal films (UTMFs) are promising electrode candidates for semitransparent perovskite solar cells (St-PSCs). However, deposited UTMFs often exist in metastable or unstable states, leading to dewetting or aggregation at elevated temperatures, which compromises the stability of the St-PSCs. Here, we investigate the stability behavior of UTMFs in St-PSCs during operational conditions and discover that the solid-state dewetting of UTMFs can occur even at room temperature and atmospheric pressure. By introducing an additional tin oxide (SnOx) cladding layer on the top of UTMFs via atomic layer deposition (ALD), the stability of UTMFs and St-PSCs is significantly improved. Our St-PSCs with UTMFs/SnOx electrodes achieve a promising power conversion efficiency (PCE) of 20.1%. Encapsulated devices retain 95% of the initial efficiency after 500 h continuous operation under 1 sun illumination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信