Shurong Jing,Yuxin Wang,Yuyang Song,Shaopeng Fan,Na Luo,Qiaoqiao Gan,Yijie Fan,Yanjun Guo,Yu Ni
{"title":"bna9对角质层和细胞壁生物合成的双重调控。MYB46赋予甘蓝型油菜耐旱性","authors":"Shurong Jing,Yuxin Wang,Yuyang Song,Shaopeng Fan,Na Luo,Qiaoqiao Gan,Yijie Fan,Yanjun Guo,Yu Ni","doi":"10.1111/pbi.70314","DOIUrl":null,"url":null,"abstract":"The plant cuticle and cell wall are pivotal extracellular barriers safeguarding crops against drought, yet their coordinated regulation remains poorly understood. Here, we identify BnaC9.MYB46, an R2R3-MYB transcription factor in the polyploid oilseed Brassica napus, as a dual-function regulatory hub that synchronises cuticle reinforcement and secondary cell wall remodelling to enhance drought resilience. Functional analyses reveal that BnaC9.MYB46 directly activates key genes involved in wax and cutin biosynthesis-including BnaA1.MYB106, BnaLACS3/4/9, BnaKCR1/KCR2, BnaC2.KCS19 and BnaA9.CER1-2-while simultaneously repressing the wax inhibitor BnaC9.DEWAX1. These actions lead to thicker cuticles, enhanced deposition of alkane-rich waxes, modest alterations in cutin-like fatty acids, reduced cuticular permeability and improved water retention. Notably, BnaC2.KCS19 and the BnaC9.DEWAX1-BnaA9.CER1-2 module are validated as critical mediators underpinning wax phenotype and drought tolerance. In parallel, BnaC9.MYB46 promotes the expression of secondary cell wall biosynthesis genes (BnaC9.KOR1, BnaC2.IRX8, BnaC1.F5H), enhancing cellulose, hemicellulose and lignin deposition to stabilise vascular integrity under water deficit. By orchestrating both cuticle fortification and cell wall remodelling, BnaC9.MYB46 establishes dual protective barriers that limit water loss and preserve physiological function. This study redefines MYB46 as a central integrator of extracellular barrier formation and highlights BnaC9.MYB46 as a promising molecular target for breeding drought-resilient rapeseed cultivars through coordinated enhancement of cuticle and cell wall properties.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"106 1","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Regulation of Cuticle and Cell Wall Biosynthesis by BnaC9.MYB46 Confers Drought Tolerance in Brassica napus.\",\"authors\":\"Shurong Jing,Yuxin Wang,Yuyang Song,Shaopeng Fan,Na Luo,Qiaoqiao Gan,Yijie Fan,Yanjun Guo,Yu Ni\",\"doi\":\"10.1111/pbi.70314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The plant cuticle and cell wall are pivotal extracellular barriers safeguarding crops against drought, yet their coordinated regulation remains poorly understood. Here, we identify BnaC9.MYB46, an R2R3-MYB transcription factor in the polyploid oilseed Brassica napus, as a dual-function regulatory hub that synchronises cuticle reinforcement and secondary cell wall remodelling to enhance drought resilience. Functional analyses reveal that BnaC9.MYB46 directly activates key genes involved in wax and cutin biosynthesis-including BnaA1.MYB106, BnaLACS3/4/9, BnaKCR1/KCR2, BnaC2.KCS19 and BnaA9.CER1-2-while simultaneously repressing the wax inhibitor BnaC9.DEWAX1. These actions lead to thicker cuticles, enhanced deposition of alkane-rich waxes, modest alterations in cutin-like fatty acids, reduced cuticular permeability and improved water retention. Notably, BnaC2.KCS19 and the BnaC9.DEWAX1-BnaA9.CER1-2 module are validated as critical mediators underpinning wax phenotype and drought tolerance. In parallel, BnaC9.MYB46 promotes the expression of secondary cell wall biosynthesis genes (BnaC9.KOR1, BnaC2.IRX8, BnaC1.F5H), enhancing cellulose, hemicellulose and lignin deposition to stabilise vascular integrity under water deficit. By orchestrating both cuticle fortification and cell wall remodelling, BnaC9.MYB46 establishes dual protective barriers that limit water loss and preserve physiological function. This study redefines MYB46 as a central integrator of extracellular barrier formation and highlights BnaC9.MYB46 as a promising molecular target for breeding drought-resilient rapeseed cultivars through coordinated enhancement of cuticle and cell wall properties.\",\"PeriodicalId\":221,\"journal\":{\"name\":\"Plant Biotechnology Journal\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/pbi.70314\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.70314","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Dual Regulation of Cuticle and Cell Wall Biosynthesis by BnaC9.MYB46 Confers Drought Tolerance in Brassica napus.
The plant cuticle and cell wall are pivotal extracellular barriers safeguarding crops against drought, yet their coordinated regulation remains poorly understood. Here, we identify BnaC9.MYB46, an R2R3-MYB transcription factor in the polyploid oilseed Brassica napus, as a dual-function regulatory hub that synchronises cuticle reinforcement and secondary cell wall remodelling to enhance drought resilience. Functional analyses reveal that BnaC9.MYB46 directly activates key genes involved in wax and cutin biosynthesis-including BnaA1.MYB106, BnaLACS3/4/9, BnaKCR1/KCR2, BnaC2.KCS19 and BnaA9.CER1-2-while simultaneously repressing the wax inhibitor BnaC9.DEWAX1. These actions lead to thicker cuticles, enhanced deposition of alkane-rich waxes, modest alterations in cutin-like fatty acids, reduced cuticular permeability and improved water retention. Notably, BnaC2.KCS19 and the BnaC9.DEWAX1-BnaA9.CER1-2 module are validated as critical mediators underpinning wax phenotype and drought tolerance. In parallel, BnaC9.MYB46 promotes the expression of secondary cell wall biosynthesis genes (BnaC9.KOR1, BnaC2.IRX8, BnaC1.F5H), enhancing cellulose, hemicellulose and lignin deposition to stabilise vascular integrity under water deficit. By orchestrating both cuticle fortification and cell wall remodelling, BnaC9.MYB46 establishes dual protective barriers that limit water loss and preserve physiological function. This study redefines MYB46 as a central integrator of extracellular barrier formation and highlights BnaC9.MYB46 as a promising molecular target for breeding drought-resilient rapeseed cultivars through coordinated enhancement of cuticle and cell wall properties.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.