Yong Shen, Bohan Li, Lei Dong, Wei Tang, Jiwu Ren, Feng Chen, Wenjuan Zheng, Ying Yu, Lu Gao, Wensheng Wei
{"title":"完整的I和II族内含子促进了自剪接RNA的环状化","authors":"Yong Shen, Bohan Li, Lei Dong, Wei Tang, Jiwu Ren, Feng Chen, Wenjuan Zheng, Ying Yu, Lu Gao, Wensheng Wei","doi":"10.1038/s41467-025-62607-y","DOIUrl":null,"url":null,"abstract":"<p>Circular RNA (circRNA) has gained significant attention in RNA therapeutics due to its enhanced stability and protein-coding potential. In this study, we present two in vitro RNA circularization techniques, namely Permuted Intron-Exon through Trans-splicing (PIET) and Complete self-splicing Intron for RNA Circularization (CIRC). PIET leverages the second step of group I intron splicing, offering an alternative circularization strategy. CIRC utilizes the natural, intact forms of group I and group II introns, eliminating the need for intron engineering. Compared to Permuted Intron-Exon (PIE), CIRC exhibits enhanced RNA circularization efficiency and speed under mild conditions. Using CIRC, we successfully circularize large RNA constructs encoding full-length dystrophin, a protein whose deficiency is linked to Duchenne muscular dystrophy (DMD), thus overcoming size limitations typically associated with circRNA platforms. Notably, CIRC enables the production of scarless circRNA and circRNA with minimal immunogenicity. Additionally, CIRC supports streamlined circRNA purification using ribonuclease R (RNase R) or oligo(dT)-based methods. These advancements significantly expand the potential of the circRNA platform for both research and therapeutic applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"52 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-splicing RNA circularization facilitated by intact group I and II introns\",\"authors\":\"Yong Shen, Bohan Li, Lei Dong, Wei Tang, Jiwu Ren, Feng Chen, Wenjuan Zheng, Ying Yu, Lu Gao, Wensheng Wei\",\"doi\":\"10.1038/s41467-025-62607-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Circular RNA (circRNA) has gained significant attention in RNA therapeutics due to its enhanced stability and protein-coding potential. In this study, we present two in vitro RNA circularization techniques, namely Permuted Intron-Exon through Trans-splicing (PIET) and Complete self-splicing Intron for RNA Circularization (CIRC). PIET leverages the second step of group I intron splicing, offering an alternative circularization strategy. CIRC utilizes the natural, intact forms of group I and group II introns, eliminating the need for intron engineering. Compared to Permuted Intron-Exon (PIE), CIRC exhibits enhanced RNA circularization efficiency and speed under mild conditions. Using CIRC, we successfully circularize large RNA constructs encoding full-length dystrophin, a protein whose deficiency is linked to Duchenne muscular dystrophy (DMD), thus overcoming size limitations typically associated with circRNA platforms. Notably, CIRC enables the production of scarless circRNA and circRNA with minimal immunogenicity. Additionally, CIRC supports streamlined circRNA purification using ribonuclease R (RNase R) or oligo(dT)-based methods. These advancements significantly expand the potential of the circRNA platform for both research and therapeutic applications.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62607-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62607-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Self-splicing RNA circularization facilitated by intact group I and II introns
Circular RNA (circRNA) has gained significant attention in RNA therapeutics due to its enhanced stability and protein-coding potential. In this study, we present two in vitro RNA circularization techniques, namely Permuted Intron-Exon through Trans-splicing (PIET) and Complete self-splicing Intron for RNA Circularization (CIRC). PIET leverages the second step of group I intron splicing, offering an alternative circularization strategy. CIRC utilizes the natural, intact forms of group I and group II introns, eliminating the need for intron engineering. Compared to Permuted Intron-Exon (PIE), CIRC exhibits enhanced RNA circularization efficiency and speed under mild conditions. Using CIRC, we successfully circularize large RNA constructs encoding full-length dystrophin, a protein whose deficiency is linked to Duchenne muscular dystrophy (DMD), thus overcoming size limitations typically associated with circRNA platforms. Notably, CIRC enables the production of scarless circRNA and circRNA with minimal immunogenicity. Additionally, CIRC supports streamlined circRNA purification using ribonuclease R (RNase R) or oligo(dT)-based methods. These advancements significantly expand the potential of the circRNA platform for both research and therapeutic applications.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.