氧化还原酶MICAL1分解f -肌动蛋白促进血小板中机械依赖性VWF-GPIbα相互作用

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jean Solarz, Christelle Soukaseum, Stéphane Frémont, Sébastien Eymieux, Camilia Nabli, Christelle Repérant, Elisa Rossi, Jean-Claude Bordet, Cécile V. Denis, Pierre Mangin, Yacine Boulaftali, R. Jeroen Pasterkamp, Hana Raslova, Dominique Baruch, Frédéric Adam, Arnaud Echard, Alexandre Kauskot
{"title":"氧化还原酶MICAL1分解f -肌动蛋白促进血小板中机械依赖性VWF-GPIbα相互作用","authors":"Jean Solarz, Christelle Soukaseum, Stéphane Frémont, Sébastien Eymieux, Camilia Nabli, Christelle Repérant, Elisa Rossi, Jean-Claude Bordet, Cécile V. Denis, Pierre Mangin, Yacine Boulaftali, R. Jeroen Pasterkamp, Hana Raslova, Dominique Baruch, Frédéric Adam, Arnaud Echard, Alexandre Kauskot","doi":"10.1038/s41467-025-62487-2","DOIUrl":null,"url":null,"abstract":"<p>Mechano-dependent interactions are key to thrombus formation and hemostasis, enabling stable platelet adhesion to injured vessels. The interaction between von Willebrand factor (VWF) and the platelet receptor GPIb-IX-V is central to this process. While GPIbα connects to the actin cytoskeleton, whether actin dynamics are important for GPIbα function under hemodynamic, high shear conditions remains largely unknown. Here, we show that actin disassembly is critical for proper VWF-GPIbα binding under shear. Mechanistically, we identify the oxidoreductase MICAL1 as a shear-activated regulator that promotes local F-actin disassembly around the GPIb-IX-V complex. This enables its translocation to lipid rafts and reinforces VWF binding. MICAL1-deficient platelets display impaired adhesion, increased deformability under shear, and defective thrombus formation in vivo. Thus, MICAL1 drives shear-dependent actin remodeling that supports GPIb-IX-V mechanotransduction and platelet function. These findings uncover a role for actin oxidation in platelet adhesion, providing a connection between cytoskeletal redox control and platelet function during thrombus formation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"1 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"F-actin disassembly by the oxidoreductase MICAL1 promotes mechano-dependent VWF-GPIbα interaction in platelets\",\"authors\":\"Jean Solarz, Christelle Soukaseum, Stéphane Frémont, Sébastien Eymieux, Camilia Nabli, Christelle Repérant, Elisa Rossi, Jean-Claude Bordet, Cécile V. Denis, Pierre Mangin, Yacine Boulaftali, R. Jeroen Pasterkamp, Hana Raslova, Dominique Baruch, Frédéric Adam, Arnaud Echard, Alexandre Kauskot\",\"doi\":\"10.1038/s41467-025-62487-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mechano-dependent interactions are key to thrombus formation and hemostasis, enabling stable platelet adhesion to injured vessels. The interaction between von Willebrand factor (VWF) and the platelet receptor GPIb-IX-V is central to this process. While GPIbα connects to the actin cytoskeleton, whether actin dynamics are important for GPIbα function under hemodynamic, high shear conditions remains largely unknown. Here, we show that actin disassembly is critical for proper VWF-GPIbα binding under shear. Mechanistically, we identify the oxidoreductase MICAL1 as a shear-activated regulator that promotes local F-actin disassembly around the GPIb-IX-V complex. This enables its translocation to lipid rafts and reinforces VWF binding. MICAL1-deficient platelets display impaired adhesion, increased deformability under shear, and defective thrombus formation in vivo. Thus, MICAL1 drives shear-dependent actin remodeling that supports GPIb-IX-V mechanotransduction and platelet function. These findings uncover a role for actin oxidation in platelet adhesion, providing a connection between cytoskeletal redox control and platelet function during thrombus formation.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62487-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62487-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

机械依赖的相互作用是血栓形成和止血的关键,使血小板与受伤血管的粘附稳定。血管性血友病因子(VWF)和血小板受体GPIb-IX-V之间的相互作用是这一过程的核心。虽然GPIbα与肌动蛋白细胞骨架相连,但在血流动力学、高剪切条件下,肌动蛋白动力学是否对GPIbα的功能起重要作用仍不得而知。在这里,我们发现肌动蛋白的分解对于VWF-GPIbα在剪切下的正确结合至关重要。从机制上讲,我们发现氧化还原酶MICAL1是一种剪切激活的调节剂,可促进GPIb-IX-V复合物周围的局部f -肌动蛋白分解。这使其转运到脂筏并加强VWF的结合。mical1缺失的血小板在体内表现出粘附受损、剪切下变形能力增加和血栓形成缺陷。因此,MICAL1驱动剪切依赖性肌动蛋白重塑,支持GPIb-IX-V机械转导和血小板功能。这些发现揭示了肌动蛋白氧化在血小板粘附中的作用,提供了血栓形成过程中细胞骨架氧化还原控制与血小板功能之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

F-actin disassembly by the oxidoreductase MICAL1 promotes mechano-dependent VWF-GPIbα interaction in platelets

F-actin disassembly by the oxidoreductase MICAL1 promotes mechano-dependent VWF-GPIbα interaction in platelets

Mechano-dependent interactions are key to thrombus formation and hemostasis, enabling stable platelet adhesion to injured vessels. The interaction between von Willebrand factor (VWF) and the platelet receptor GPIb-IX-V is central to this process. While GPIbα connects to the actin cytoskeleton, whether actin dynamics are important for GPIbα function under hemodynamic, high shear conditions remains largely unknown. Here, we show that actin disassembly is critical for proper VWF-GPIbα binding under shear. Mechanistically, we identify the oxidoreductase MICAL1 as a shear-activated regulator that promotes local F-actin disassembly around the GPIb-IX-V complex. This enables its translocation to lipid rafts and reinforces VWF binding. MICAL1-deficient platelets display impaired adhesion, increased deformability under shear, and defective thrombus formation in vivo. Thus, MICAL1 drives shear-dependent actin remodeling that supports GPIb-IX-V mechanotransduction and platelet function. These findings uncover a role for actin oxidation in platelet adhesion, providing a connection between cytoskeletal redox control and platelet function during thrombus formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信