氧化锶功能化3d打印聚己内酯/β-磷酸三钙纳米复合支架的成骨微环境重塑加速骨再生。

IF 3.5
Song Fuxiang, Ze Lalai A Di Li, Wang Zhili, Ling Yunxiao, Zhao Qianjuan, Liu Bin
{"title":"氧化锶功能化3d打印聚己内酯/β-磷酸三钙纳米复合支架的成骨微环境重塑加速骨再生。","authors":"Song Fuxiang, Ze Lalai A Di Li, Wang Zhili, Ling Yunxiao, Zhao Qianjuan, Liu Bin","doi":"10.1016/j.jmbbm.2025.107146","DOIUrl":null,"url":null,"abstract":"<p><p>The repair of critical bone defects resulting from trauma, infection, tumors, and congenital malformations poses significant clinical challenges. The combination of medical-grade polycaprolactone (PCL) and β-tricalcium phosphate (β-TCP) is widely investigated for developing synthetic bone graft substitutes, attracting considerable interest in regenerative medicine. However, the material's inherent lack of osteogenic capacity remains a bottleneck to its widespread clinical application. This study synthesized a strontium oxide (SrO)-functionalized three-dimensional (3D)-printed polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP) composite scaffold. Gradient SrO-doped (0-2.0 wt %) 3D printed scaffolds (3D PTSr) were fabricated by melt blending and direct ink writing (DIW) technology, and their physicochemical and biological properties were systematically characterized. Scanning electron microscopy (SEM) showed that the 3D PTSr scaffold had a precisely regulated macroscopic pore structure (pore size ∼ 1 mm) and uniformly distributed Sr element. When the doping amount of SrO was 1.5 wt %, the scaffold exhibited the best comprehensive performance: the surface contact angle was reduced to 64.78° ± 0.54°, and the weight loss rate was 42.83 ± 0.02 % after 4 weeks of in vitro degradation. At the same time, it showed the sustained release characteristics of Sr<sup>2+</sup> for 56 days (cumulative release of 10.42 ppm). Mechanical tests showed that the compressive strength (5.64 ± 0.04 MPa) and tensile strength (2.75 ± 0.16 MPa) were significantly better than the control group (p < 0.05). In vitro biomimetic mineralization experiments confirmed that SrO functionalization facilitated dense calcium-phosphate composite layer formation. In vitro experiments demonstrated that the 3D PTSr1.5 scaffold significantly promoted the proliferation of MC3T3-E1 cells, and its osteogenic differentiation ability was verified by increasing alkaline phosphatase (ALP) activity and calcium nodule formation. Implantation of 3D PTSr1.5 scaffold into rat cranial defects significantly enhanced bone regeneration at 12 weeks versus controls. Histological analysis confirmed substantial regeneration of mature bone tissue and collagen fibers within the defect area. This study reveals the molecular mechanism of SrO functionalization promoting bone regeneration by regulating the synergistic effect of material degradation-ion release-topology, and provides a theoretical basis and technical reserve for the development of next-generation intelligent bone repair materials.</p>","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"172 ","pages":"107146"},"PeriodicalIF":3.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strontium oxide-functionalized 3D-printed polycaprolactone/β-tricalcium phosphate nanocomposite scaffolds with osteogenic microenvironment remodeling for accelerated bone regeneration.\",\"authors\":\"Song Fuxiang, Ze Lalai A Di Li, Wang Zhili, Ling Yunxiao, Zhao Qianjuan, Liu Bin\",\"doi\":\"10.1016/j.jmbbm.2025.107146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The repair of critical bone defects resulting from trauma, infection, tumors, and congenital malformations poses significant clinical challenges. The combination of medical-grade polycaprolactone (PCL) and β-tricalcium phosphate (β-TCP) is widely investigated for developing synthetic bone graft substitutes, attracting considerable interest in regenerative medicine. However, the material's inherent lack of osteogenic capacity remains a bottleneck to its widespread clinical application. This study synthesized a strontium oxide (SrO)-functionalized three-dimensional (3D)-printed polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP) composite scaffold. Gradient SrO-doped (0-2.0 wt %) 3D printed scaffolds (3D PTSr) were fabricated by melt blending and direct ink writing (DIW) technology, and their physicochemical and biological properties were systematically characterized. Scanning electron microscopy (SEM) showed that the 3D PTSr scaffold had a precisely regulated macroscopic pore structure (pore size ∼ 1 mm) and uniformly distributed Sr element. When the doping amount of SrO was 1.5 wt %, the scaffold exhibited the best comprehensive performance: the surface contact angle was reduced to 64.78° ± 0.54°, and the weight loss rate was 42.83 ± 0.02 % after 4 weeks of in vitro degradation. At the same time, it showed the sustained release characteristics of Sr<sup>2+</sup> for 56 days (cumulative release of 10.42 ppm). Mechanical tests showed that the compressive strength (5.64 ± 0.04 MPa) and tensile strength (2.75 ± 0.16 MPa) were significantly better than the control group (p < 0.05). In vitro biomimetic mineralization experiments confirmed that SrO functionalization facilitated dense calcium-phosphate composite layer formation. In vitro experiments demonstrated that the 3D PTSr1.5 scaffold significantly promoted the proliferation of MC3T3-E1 cells, and its osteogenic differentiation ability was verified by increasing alkaline phosphatase (ALP) activity and calcium nodule formation. Implantation of 3D PTSr1.5 scaffold into rat cranial defects significantly enhanced bone regeneration at 12 weeks versus controls. Histological analysis confirmed substantial regeneration of mature bone tissue and collagen fibers within the defect area. This study reveals the molecular mechanism of SrO functionalization promoting bone regeneration by regulating the synergistic effect of material degradation-ion release-topology, and provides a theoretical basis and technical reserve for the development of next-generation intelligent bone repair materials.</p>\",\"PeriodicalId\":94117,\"journal\":{\"name\":\"Journal of the mechanical behavior of biomedical materials\",\"volume\":\"172 \",\"pages\":\"107146\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the mechanical behavior of biomedical materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmbbm.2025.107146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmbbm.2025.107146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于创伤、感染、肿瘤和先天性畸形导致的严重骨缺损的修复提出了重大的临床挑战。医用级聚己内酯(PCL)和β-磷酸三钙(β-TCP)的结合被广泛研究用于开发人工骨移植替代物,引起了再生医学领域的广泛关注。然而,该材料固有的成骨能力不足仍然是其广泛临床应用的瓶颈。本研究合成了一种氧化锶(SrO)功能化的三维(3D)打印聚己内酯(PCL)/β-磷酸三钙(β-TCP)复合支架。采用熔融共混和直接墨水书写(DIW)技术制备了梯度sro掺杂(0-2.0 wt %) 3D打印支架(3D PTSr),并对其物理化学和生物性能进行了系统表征。扫描电镜(SEM)显示,三维PTSr支架具有精确调控的宏观孔隙结构(孔径约1 mm)和均匀分布的Sr元素。当SrO掺杂量为1.5 wt %时,支架的综合性能最好:体外降解4周后,支架表面接触角降低到64.78°±0.54°,失重率为42.83±0.02%。同时表现出Sr2+的缓释特性,累积释放量为10.42 ppm,持续56 d。力学试验表明,抗压强度(5.64±0.04 MPa)和抗拉强度(2.75±0.16 MPa)均显著优于对照组(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strontium oxide-functionalized 3D-printed polycaprolactone/β-tricalcium phosphate nanocomposite scaffolds with osteogenic microenvironment remodeling for accelerated bone regeneration.

The repair of critical bone defects resulting from trauma, infection, tumors, and congenital malformations poses significant clinical challenges. The combination of medical-grade polycaprolactone (PCL) and β-tricalcium phosphate (β-TCP) is widely investigated for developing synthetic bone graft substitutes, attracting considerable interest in regenerative medicine. However, the material's inherent lack of osteogenic capacity remains a bottleneck to its widespread clinical application. This study synthesized a strontium oxide (SrO)-functionalized three-dimensional (3D)-printed polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP) composite scaffold. Gradient SrO-doped (0-2.0 wt %) 3D printed scaffolds (3D PTSr) were fabricated by melt blending and direct ink writing (DIW) technology, and their physicochemical and biological properties were systematically characterized. Scanning electron microscopy (SEM) showed that the 3D PTSr scaffold had a precisely regulated macroscopic pore structure (pore size ∼ 1 mm) and uniformly distributed Sr element. When the doping amount of SrO was 1.5 wt %, the scaffold exhibited the best comprehensive performance: the surface contact angle was reduced to 64.78° ± 0.54°, and the weight loss rate was 42.83 ± 0.02 % after 4 weeks of in vitro degradation. At the same time, it showed the sustained release characteristics of Sr2+ for 56 days (cumulative release of 10.42 ppm). Mechanical tests showed that the compressive strength (5.64 ± 0.04 MPa) and tensile strength (2.75 ± 0.16 MPa) were significantly better than the control group (p < 0.05). In vitro biomimetic mineralization experiments confirmed that SrO functionalization facilitated dense calcium-phosphate composite layer formation. In vitro experiments demonstrated that the 3D PTSr1.5 scaffold significantly promoted the proliferation of MC3T3-E1 cells, and its osteogenic differentiation ability was verified by increasing alkaline phosphatase (ALP) activity and calcium nodule formation. Implantation of 3D PTSr1.5 scaffold into rat cranial defects significantly enhanced bone regeneration at 12 weeks versus controls. Histological analysis confirmed substantial regeneration of mature bone tissue and collagen fibers within the defect area. This study reveals the molecular mechanism of SrO functionalization promoting bone regeneration by regulating the synergistic effect of material degradation-ion release-topology, and provides a theoretical basis and technical reserve for the development of next-generation intelligent bone repair materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信