超分子纳米结构体外模拟GDNF对人多巴胺能神经元的营养作用。

IF 6.5 1区 医学 Q1 CELL & TISSUE ENGINEERING
Oscar A Carballo-Molina, Alexandra N Kolberg-Edelbrock, Matías Alvarez-Saavedra, Zaida Álvarez, Timmy Fyrner, Tamara Perez-Rosello, Zois Syrgiannis, Stacey M Chin, Nozomu Takata, Madison Strong, Liam C Palmer, D James Surmeier, Samuel I Stupp
{"title":"超分子纳米结构体外模拟GDNF对人多巴胺能神经元的营养作用。","authors":"Oscar A Carballo-Molina, Alexandra N Kolberg-Edelbrock, Matías Alvarez-Saavedra, Zaida Álvarez, Timmy Fyrner, Tamara Perez-Rosello, Zois Syrgiannis, Stacey M Chin, Nozomu Takata, Madison Strong, Liam C Palmer, D James Surmeier, Samuel I Stupp","doi":"10.1038/s41536-025-00424-z","DOIUrl":null,"url":null,"abstract":"<p><p>Peptide-based supramolecular nanostructures offer a versatile platform with substantial promise for clinical translation in regenerative medicine. These systems allow for the incorporation of biologically active sequences and can be engineered to modulate tissue-specific parameters such as stiffness, diffusivity, and biodegradability. We developed here a bioactive supramolecular nanostructure containing a peptide designed based on glial cell-derived neurotrophic factor. These nanostructures form scaffolds that mimic important trophic effects provided by this growth factor on iPSC-derived human dopaminergic neurons. Our in vitro data show that the nanostructures promote cell viability, confer neuroprotection against 6-hydroxydopamine toxicity, enhance neuronal morphology, facilitate electrophysiological maturation, and induce genes involved in neuronal survival. We also found that the scaffold promoted axonal extension in midbrain human organoids. These findings suggest that the supramolecular system could be useful to improve outcomes in cell-based therapies for Parkinson's disease, where progressive dopaminergic degeneration is a hallmark.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"10 1","pages":"37"},"PeriodicalIF":6.5000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334742/pdf/","citationCount":"0","resultStr":"{\"title\":\"Supramolecular nanostructure mimics GDNF trophic effects in vitro on human dopaminergic neurons.\",\"authors\":\"Oscar A Carballo-Molina, Alexandra N Kolberg-Edelbrock, Matías Alvarez-Saavedra, Zaida Álvarez, Timmy Fyrner, Tamara Perez-Rosello, Zois Syrgiannis, Stacey M Chin, Nozomu Takata, Madison Strong, Liam C Palmer, D James Surmeier, Samuel I Stupp\",\"doi\":\"10.1038/s41536-025-00424-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peptide-based supramolecular nanostructures offer a versatile platform with substantial promise for clinical translation in regenerative medicine. These systems allow for the incorporation of biologically active sequences and can be engineered to modulate tissue-specific parameters such as stiffness, diffusivity, and biodegradability. We developed here a bioactive supramolecular nanostructure containing a peptide designed based on glial cell-derived neurotrophic factor. These nanostructures form scaffolds that mimic important trophic effects provided by this growth factor on iPSC-derived human dopaminergic neurons. Our in vitro data show that the nanostructures promote cell viability, confer neuroprotection against 6-hydroxydopamine toxicity, enhance neuronal morphology, facilitate electrophysiological maturation, and induce genes involved in neuronal survival. We also found that the scaffold promoted axonal extension in midbrain human organoids. These findings suggest that the supramolecular system could be useful to improve outcomes in cell-based therapies for Parkinson's disease, where progressive dopaminergic degeneration is a hallmark.</p>\",\"PeriodicalId\":54236,\"journal\":{\"name\":\"npj Regenerative Medicine\",\"volume\":\"10 1\",\"pages\":\"37\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334742/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Regenerative Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41536-025-00424-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Regenerative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41536-025-00424-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

基于多肽的超分子纳米结构为再生医学的临床转化提供了一个多功能的平台。这些系统允许生物活性序列的掺入,并且可以通过工程设计来调节组织特异性参数,如刚度、扩散率和生物降解性。我们在这里开发了一种生物活性的超分子纳米结构,其中包含基于胶质细胞来源的神经营养因子设计的肽。这些纳米结构形成支架,模拟这种生长因子对ipsc衍生的人类多巴胺能神经元提供的重要营养作用。我们的体外数据表明,纳米结构促进细胞活力,赋予神经保护免受6-羟多巴胺毒性,增强神经元形态,促进电生理成熟,并诱导参与神经元存活的基因。我们还发现支架促进了中脑类器官的轴突延伸。这些发现表明,超分子系统可能有助于改善帕金森氏病的细胞治疗结果,其中进行性多巴胺能变性是一个标志。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supramolecular nanostructure mimics GDNF trophic effects in vitro on human dopaminergic neurons.

Peptide-based supramolecular nanostructures offer a versatile platform with substantial promise for clinical translation in regenerative medicine. These systems allow for the incorporation of biologically active sequences and can be engineered to modulate tissue-specific parameters such as stiffness, diffusivity, and biodegradability. We developed here a bioactive supramolecular nanostructure containing a peptide designed based on glial cell-derived neurotrophic factor. These nanostructures form scaffolds that mimic important trophic effects provided by this growth factor on iPSC-derived human dopaminergic neurons. Our in vitro data show that the nanostructures promote cell viability, confer neuroprotection against 6-hydroxydopamine toxicity, enhance neuronal morphology, facilitate electrophysiological maturation, and induce genes involved in neuronal survival. We also found that the scaffold promoted axonal extension in midbrain human organoids. These findings suggest that the supramolecular system could be useful to improve outcomes in cell-based therapies for Parkinson's disease, where progressive dopaminergic degeneration is a hallmark.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Regenerative Medicine
npj Regenerative Medicine Engineering-Biomedical Engineering
CiteScore
10.00
自引率
1.40%
发文量
71
审稿时长
12 weeks
期刊介绍: Regenerative Medicine, an innovative online-only journal, aims to advance research in the field of repairing and regenerating damaged tissues and organs within the human body. As a part of the prestigious Nature Partner Journals series and in partnership with ARMI, this high-quality, open access journal serves as a platform for scientists to explore effective therapies that harness the body's natural regenerative capabilities. With a focus on understanding the fundamental mechanisms of tissue damage and regeneration, npj Regenerative Medicine actively encourages studies that bridge the gap between basic research and clinical tissue repair strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信