{"title":"韩国貉粪便抗性组和致病基因组的空间季节性比较。","authors":"Priyanka Kumari, Binu M Tripathi, Kyung Yeon Eo, Junpei Kimura, Naomichi Yamamoto","doi":"10.1007/s10393-025-01744-8","DOIUrl":null,"url":null,"abstract":"<p><p>The raccoon dog (Nyctereutes procyonoides) is a medium-sized omnivore native to Asia. Because they live close to human habitation, and therefore, there is likely bidirectional influence between raccoon dogs and humans, it is important to investigate their potential risks. Here, to identify potential risks of carriage of antimicrobial resistance (AMR) and human pathogens by raccoon dogs, we investigated spatioseasonal patterns of fecal resistome (collection of antimicrobial resistance genes: ARGs), pathogenome (collection of virulence factor genes: VFGs), and microbiome (collection of bacterial species) of raccoon dogs inhabiting an urban forest area and a rural rice paddy area in Korea. Metagenomic sequencing revealed that the compositions of fecal resistome, pathogenome, and microbiome were all patterned by season, and we hypothesize that the observed patterns are due to seasonal changes in the diet of omnivorous raccoon dogs. Furthermore, although less pronounced than the seasonal differences, we also observed the geographical differences in the resistome, with aminoglycoside resistance genes being more prevalent in the rural area, which may reflect the geographical difference in selective pressures for AMR emergence, such as the use of manure that may contain antimicrobials in rice cultivation in agricultural areas. Additionally, our network analysis revealed that specific antimicrobial resistance genes were linked to specific bacterial pathogens, e.g., tetA-P to Clostridium. Overall, our study successfully revealed for the first time that not only the microbiome, but also the resistome and pathogenome of wild animals change spatioseasonally, and that the risk of AMR in bacterial pathogens laden by raccoon dogs is spatioseasonal.</p>","PeriodicalId":51027,"journal":{"name":"Ecohealth","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatioseasonal Comparison of Fecal Resistome and Pathogenome of Raccoon Dogs in Korea.\",\"authors\":\"Priyanka Kumari, Binu M Tripathi, Kyung Yeon Eo, Junpei Kimura, Naomichi Yamamoto\",\"doi\":\"10.1007/s10393-025-01744-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The raccoon dog (Nyctereutes procyonoides) is a medium-sized omnivore native to Asia. Because they live close to human habitation, and therefore, there is likely bidirectional influence between raccoon dogs and humans, it is important to investigate their potential risks. Here, to identify potential risks of carriage of antimicrobial resistance (AMR) and human pathogens by raccoon dogs, we investigated spatioseasonal patterns of fecal resistome (collection of antimicrobial resistance genes: ARGs), pathogenome (collection of virulence factor genes: VFGs), and microbiome (collection of bacterial species) of raccoon dogs inhabiting an urban forest area and a rural rice paddy area in Korea. Metagenomic sequencing revealed that the compositions of fecal resistome, pathogenome, and microbiome were all patterned by season, and we hypothesize that the observed patterns are due to seasonal changes in the diet of omnivorous raccoon dogs. Furthermore, although less pronounced than the seasonal differences, we also observed the geographical differences in the resistome, with aminoglycoside resistance genes being more prevalent in the rural area, which may reflect the geographical difference in selective pressures for AMR emergence, such as the use of manure that may contain antimicrobials in rice cultivation in agricultural areas. Additionally, our network analysis revealed that specific antimicrobial resistance genes were linked to specific bacterial pathogens, e.g., tetA-P to Clostridium. Overall, our study successfully revealed for the first time that not only the microbiome, but also the resistome and pathogenome of wild animals change spatioseasonally, and that the risk of AMR in bacterial pathogens laden by raccoon dogs is spatioseasonal.</p>\",\"PeriodicalId\":51027,\"journal\":{\"name\":\"Ecohealth\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecohealth\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10393-025-01744-8\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohealth","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10393-025-01744-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Spatioseasonal Comparison of Fecal Resistome and Pathogenome of Raccoon Dogs in Korea.
The raccoon dog (Nyctereutes procyonoides) is a medium-sized omnivore native to Asia. Because they live close to human habitation, and therefore, there is likely bidirectional influence between raccoon dogs and humans, it is important to investigate their potential risks. Here, to identify potential risks of carriage of antimicrobial resistance (AMR) and human pathogens by raccoon dogs, we investigated spatioseasonal patterns of fecal resistome (collection of antimicrobial resistance genes: ARGs), pathogenome (collection of virulence factor genes: VFGs), and microbiome (collection of bacterial species) of raccoon dogs inhabiting an urban forest area and a rural rice paddy area in Korea. Metagenomic sequencing revealed that the compositions of fecal resistome, pathogenome, and microbiome were all patterned by season, and we hypothesize that the observed patterns are due to seasonal changes in the diet of omnivorous raccoon dogs. Furthermore, although less pronounced than the seasonal differences, we also observed the geographical differences in the resistome, with aminoglycoside resistance genes being more prevalent in the rural area, which may reflect the geographical difference in selective pressures for AMR emergence, such as the use of manure that may contain antimicrobials in rice cultivation in agricultural areas. Additionally, our network analysis revealed that specific antimicrobial resistance genes were linked to specific bacterial pathogens, e.g., tetA-P to Clostridium. Overall, our study successfully revealed for the first time that not only the microbiome, but also the resistome and pathogenome of wild animals change spatioseasonally, and that the risk of AMR in bacterial pathogens laden by raccoon dogs is spatioseasonal.
期刊介绍:
EcoHealth aims to advance research, practice, and knowledge integration at the interface of ecology and health by publishing high quality research and review articles that address and profile new ideas, developments, and programs. The journal’s scope encompasses research that integrates concepts and theory from many fields of scholarship (including ecological, social and health sciences, and the humanities) and draws upon multiple types of knowledge, including those of relevance to practice and policy. Papers address integrated ecology and health challenges arising in public health, human and veterinary medicine, conservation and ecosystem management, rural and urban development and planning, and other fields that address the social-ecological context of health. The journal is a central platform for fulfilling the mission of the EcoHealth Alliance to strive for sustainable health of people, domestic animals, wildlife, and ecosystems by promoting discovery, understanding, and transdisciplinarity.
The journal invites substantial contributions in the following areas:
One Health and Conservation Medicine
o Integrated research on health of humans, wildlife, livestock and ecosystems
o Research and policy in ecology, public health, and agricultural sustainability
o Emerging infectious diseases affecting people, wildlife, domestic animals, and plants
o Research and practice linking human and animal health and/or social-ecological systems
o Anthropogenic environmental change and drivers of disease emergence in humans, wildlife, livestock and ecosystems
o Health of humans and animals in relation to terrestrial, freshwater, and marine ecosystems
Ecosystem Approaches to Health
o Systems thinking and social-ecological systems in relation to health
o Transdiiplinary approaches to health, ecosystems and society.