利用全基因组测序对TOMM40'523多态性进行基因分型

IF 3.6 Q2 GENETICS & HEREDITY
HGG Advances Pub Date : 2025-10-09 Epub Date: 2025-08-07 DOI:10.1016/j.xhgg.2025.100488
Ricardo A Vialle, Lei Yu, Yan Li, Roberto T Raittz, Jose M Farfel, Philip L De Jager, Julie A Schneider, Lisa L Barnes, Shinya Tasaki, David A Bennett
{"title":"利用全基因组测序对TOMM40'523多态性进行基因分型","authors":"Ricardo A Vialle, Lei Yu, Yan Li, Roberto T Raittz, Jose M Farfel, Philip L De Jager, Julie A Schneider, Lisa L Barnes, Shinya Tasaki, David A Bennett","doi":"10.1016/j.xhgg.2025.100488","DOIUrl":null,"url":null,"abstract":"<p><p>The TOMM40'523 poly-T repeat polymorphism (rs10524523) has been associated with cognitive decline and Alzheimer's disease (AD) progression. Challenges in processing whole-genome sequencing (WGS) data traditionally require additional PCR and targeted sequencing assays to genotype these polymorphisms. We introduce a computational pipeline that integrates multiple short tandem repeat (STR) detection tools in an ensemble machine learning model using XGBoost. Using a sample of 1,202 participants from 4 cohort studies, we benchmarked our method against PCR-based measures. Our ensemble model outperformed individual STR tools, improving repeat length estimation accuracy (R<sup>2</sup> = 0.92) and achieving an accuracy rate of 93.2% compared with PCR-derived genotypes. Additionally, we validated our WGS-derived genotypes by replicating previously reported associations between TOMM40'523 variants and cognitive decline. Our computational genotyping tool is a scalable and reliable alternative to PCR-based assays, enabling broader investigations of TOMM40 variation in studies with WGS data.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100488"},"PeriodicalIF":3.6000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genotyping TOMM40'523 poly-T polymorphisms using whole-genome sequencing.\",\"authors\":\"Ricardo A Vialle, Lei Yu, Yan Li, Roberto T Raittz, Jose M Farfel, Philip L De Jager, Julie A Schneider, Lisa L Barnes, Shinya Tasaki, David A Bennett\",\"doi\":\"10.1016/j.xhgg.2025.100488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The TOMM40'523 poly-T repeat polymorphism (rs10524523) has been associated with cognitive decline and Alzheimer's disease (AD) progression. Challenges in processing whole-genome sequencing (WGS) data traditionally require additional PCR and targeted sequencing assays to genotype these polymorphisms. We introduce a computational pipeline that integrates multiple short tandem repeat (STR) detection tools in an ensemble machine learning model using XGBoost. Using a sample of 1,202 participants from 4 cohort studies, we benchmarked our method against PCR-based measures. Our ensemble model outperformed individual STR tools, improving repeat length estimation accuracy (R<sup>2</sup> = 0.92) and achieving an accuracy rate of 93.2% compared with PCR-derived genotypes. Additionally, we validated our WGS-derived genotypes by replicating previously reported associations between TOMM40'523 variants and cognitive decline. Our computational genotyping tool is a scalable and reliable alternative to PCR-based assays, enabling broader investigations of TOMM40 variation in studies with WGS data.</p>\",\"PeriodicalId\":34530,\"journal\":{\"name\":\"HGG Advances\",\"volume\":\" \",\"pages\":\"100488\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HGG Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xhgg.2025.100488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2025.100488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

TOMM40'523多t重复多态性(rs10524523)与认知能力下降和阿尔茨海默病(AD)进展有关。传统上,处理全基因组测序(WGS)数据的挑战需要额外的PCR和靶向测序分析来对这些多态性进行基因分型。我们介绍了一个计算管道,该管道使用XGBoost在集成机器学习模型中集成了多个短串联重复(STR)检测工具。使用来自四个队列研究的1202名参与者的样本,我们将我们的方法与基于pcr的测量方法进行了基准比较。我们的集成模型优于单个STR工具,提高了重复长度估计的准确性(R2 = 0.92),与pcr衍生的基因型相比,准确率达到93.2%。此外,我们通过复制先前报道的TOMM40'523变异与认知能力下降之间的关联,验证了wgs衍生的基因型。我们的计算型基因分型工具是一种可扩展且可靠的替代pcr分析方法,可以在WGS数据的研究中更广泛地研究TOMM40变异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genotyping TOMM40'523 poly-T polymorphisms using whole-genome sequencing.

The TOMM40'523 poly-T repeat polymorphism (rs10524523) has been associated with cognitive decline and Alzheimer's disease (AD) progression. Challenges in processing whole-genome sequencing (WGS) data traditionally require additional PCR and targeted sequencing assays to genotype these polymorphisms. We introduce a computational pipeline that integrates multiple short tandem repeat (STR) detection tools in an ensemble machine learning model using XGBoost. Using a sample of 1,202 participants from 4 cohort studies, we benchmarked our method against PCR-based measures. Our ensemble model outperformed individual STR tools, improving repeat length estimation accuracy (R2 = 0.92) and achieving an accuracy rate of 93.2% compared with PCR-derived genotypes. Additionally, we validated our WGS-derived genotypes by replicating previously reported associations between TOMM40'523 variants and cognitive decline. Our computational genotyping tool is a scalable and reliable alternative to PCR-based assays, enabling broader investigations of TOMM40 variation in studies with WGS data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信