{"title":"脂质代谢相关免疫基因LPL促进M1巨噬细胞极化并抑制乳腺癌进展","authors":"Lu Yang, Xuan Fang, Xu Liu, Yu Liu, Shaorong Zhao","doi":"10.1016/j.tice.2025.103071","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Breast cancer (BRCA) ranks among the most frequently diagnosed malignancies worldwide. Immune infiltration plays a critical role in tumor progression and therapeutic response. However, the precise mechanisms underlying immune infiltration in BRCA remain incompletely understood.</p><p><strong>Methods: </strong>Machine learning (support vector machine-recursive feature elimination and least absolute shrinkage and selection operator regression) and weighted gene co-expression network were utilized to screen hub genes. An immune infiltration assessment was carried out via TIMER and CIBERSORT. The prognostic and survival of risk model and immune infiltration-associated hub genes were analyzed through Kaplan-Meier survival analysis, Cox regression, and ROC curve evaluation. Cell functional assays and xenograft models in vivo were utilized to examine lipoprotein lipase (LPL) function. The impact of LPL on macrophage polarization was evaluated using THP-1-derived macrophages and immunohistochemistry analysis of immune infiltration (CD4, CD8, and F4/80) in vivo.</p><p><strong>Results: </strong>10 hub immune regulators were identified in BRCA, which were associated with lipid metabolism. Hub genes and a prognostic risk model exhibited high predictive accuracy for BRCA patient survival and prognosis. Overexpression of LPL inhibited BRCA cell proliferation, migration, and invasion while promoting M1-like macrophage polarization. In vivo, LPL overexpression significantly suppressed tumor growth and enhanced immune cell infiltration, as indicated by the elevation of CD4 + and F4/80 + cells along with a decline in CD8 + macrophage abundance.</p><p><strong>Conclusion: </strong>This study identifies a novel lipid metabolism-related gene signature and demonstrates that LPL overexpression modulates macrophage polarization and inhibits BRCA progression.</p>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"97 ","pages":"103071"},"PeriodicalIF":2.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipid metabolism-associated immune gene LPL promotes M1 macrophage polarization and inhibits breast cancer progression.\",\"authors\":\"Lu Yang, Xuan Fang, Xu Liu, Yu Liu, Shaorong Zhao\",\"doi\":\"10.1016/j.tice.2025.103071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Breast cancer (BRCA) ranks among the most frequently diagnosed malignancies worldwide. Immune infiltration plays a critical role in tumor progression and therapeutic response. However, the precise mechanisms underlying immune infiltration in BRCA remain incompletely understood.</p><p><strong>Methods: </strong>Machine learning (support vector machine-recursive feature elimination and least absolute shrinkage and selection operator regression) and weighted gene co-expression network were utilized to screen hub genes. An immune infiltration assessment was carried out via TIMER and CIBERSORT. The prognostic and survival of risk model and immune infiltration-associated hub genes were analyzed through Kaplan-Meier survival analysis, Cox regression, and ROC curve evaluation. Cell functional assays and xenograft models in vivo were utilized to examine lipoprotein lipase (LPL) function. The impact of LPL on macrophage polarization was evaluated using THP-1-derived macrophages and immunohistochemistry analysis of immune infiltration (CD4, CD8, and F4/80) in vivo.</p><p><strong>Results: </strong>10 hub immune regulators were identified in BRCA, which were associated with lipid metabolism. Hub genes and a prognostic risk model exhibited high predictive accuracy for BRCA patient survival and prognosis. Overexpression of LPL inhibited BRCA cell proliferation, migration, and invasion while promoting M1-like macrophage polarization. In vivo, LPL overexpression significantly suppressed tumor growth and enhanced immune cell infiltration, as indicated by the elevation of CD4 + and F4/80 + cells along with a decline in CD8 + macrophage abundance.</p><p><strong>Conclusion: </strong>This study identifies a novel lipid metabolism-related gene signature and demonstrates that LPL overexpression modulates macrophage polarization and inhibits BRCA progression.</p>\",\"PeriodicalId\":23201,\"journal\":{\"name\":\"Tissue & cell\",\"volume\":\"97 \",\"pages\":\"103071\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue & cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tice.2025.103071\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tice.2025.103071","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Lipid metabolism-associated immune gene LPL promotes M1 macrophage polarization and inhibits breast cancer progression.
Background: Breast cancer (BRCA) ranks among the most frequently diagnosed malignancies worldwide. Immune infiltration plays a critical role in tumor progression and therapeutic response. However, the precise mechanisms underlying immune infiltration in BRCA remain incompletely understood.
Methods: Machine learning (support vector machine-recursive feature elimination and least absolute shrinkage and selection operator regression) and weighted gene co-expression network were utilized to screen hub genes. An immune infiltration assessment was carried out via TIMER and CIBERSORT. The prognostic and survival of risk model and immune infiltration-associated hub genes were analyzed through Kaplan-Meier survival analysis, Cox regression, and ROC curve evaluation. Cell functional assays and xenograft models in vivo were utilized to examine lipoprotein lipase (LPL) function. The impact of LPL on macrophage polarization was evaluated using THP-1-derived macrophages and immunohistochemistry analysis of immune infiltration (CD4, CD8, and F4/80) in vivo.
Results: 10 hub immune regulators were identified in BRCA, which were associated with lipid metabolism. Hub genes and a prognostic risk model exhibited high predictive accuracy for BRCA patient survival and prognosis. Overexpression of LPL inhibited BRCA cell proliferation, migration, and invasion while promoting M1-like macrophage polarization. In vivo, LPL overexpression significantly suppressed tumor growth and enhanced immune cell infiltration, as indicated by the elevation of CD4 + and F4/80 + cells along with a decline in CD8 + macrophage abundance.
Conclusion: This study identifies a novel lipid metabolism-related gene signature and demonstrates that LPL overexpression modulates macrophage polarization and inhibits BRCA progression.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.