Matthew Jones, Hannah Percival, Alis Hales, Amber Wood, Heyuan Sun, Fabianna Tennant, Eleanor Broadberry, Eldhose Skaria, Harry Barnes, Egor Zindy, Craig Lawless, Charles Streuli, Joe Swift, Keith Brennan, Andrew P Gilmore
{"title":"基质硬度驱动醛代谢的改变,诱导DNA损伤和转化。","authors":"Matthew Jones, Hannah Percival, Alis Hales, Amber Wood, Heyuan Sun, Fabianna Tennant, Eleanor Broadberry, Eldhose Skaria, Harry Barnes, Egor Zindy, Craig Lawless, Charles Streuli, Joe Swift, Keith Brennan, Andrew P Gilmore","doi":"10.1038/s41598-025-12880-0","DOIUrl":null,"url":null,"abstract":"<p><p>Microenvironmental stiffness regulates fundamental aspects of cell behaviour, including proliferation, differentiation and metabolism, many of which are implicated in cancer initiation and progression. In the mammary gland, extracellular matrix (ECM) stiffness, associated with high mammographic density, is linked to increased breast cancer incidence. However, a mechanistic link between increased ECM stiffness and the genomic damage required for transforming mutations remains unclear. Here we show that ECM stiffness induces changes in mammary epithelial cell (MEC) metabolism which drive DNA damage. Using a mechanically tunable 3D-culture model, we demonstrate that transcriptional changes in response to increased ECM stiffness impair the ability of MECs to remove reactive aldehydes. Downregulation of multiple aldehyde dehydrogenase isoforms in MECs within a stiffer 3D ECM leads to higher levels of reactive aldehydes, resulting in genomic damage and transformation. Together, these results provide a mechanistic link between increased ECM stiffness and the genomic damage required for breast cancer initiation.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"29127"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334586/pdf/","citationCount":"0","resultStr":"{\"title\":\"Matrix stiffness drives alterations in aldehyde metabolism, inducing DNA damage and transformation.\",\"authors\":\"Matthew Jones, Hannah Percival, Alis Hales, Amber Wood, Heyuan Sun, Fabianna Tennant, Eleanor Broadberry, Eldhose Skaria, Harry Barnes, Egor Zindy, Craig Lawless, Charles Streuli, Joe Swift, Keith Brennan, Andrew P Gilmore\",\"doi\":\"10.1038/s41598-025-12880-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microenvironmental stiffness regulates fundamental aspects of cell behaviour, including proliferation, differentiation and metabolism, many of which are implicated in cancer initiation and progression. In the mammary gland, extracellular matrix (ECM) stiffness, associated with high mammographic density, is linked to increased breast cancer incidence. However, a mechanistic link between increased ECM stiffness and the genomic damage required for transforming mutations remains unclear. Here we show that ECM stiffness induces changes in mammary epithelial cell (MEC) metabolism which drive DNA damage. Using a mechanically tunable 3D-culture model, we demonstrate that transcriptional changes in response to increased ECM stiffness impair the ability of MECs to remove reactive aldehydes. Downregulation of multiple aldehyde dehydrogenase isoforms in MECs within a stiffer 3D ECM leads to higher levels of reactive aldehydes, resulting in genomic damage and transformation. Together, these results provide a mechanistic link between increased ECM stiffness and the genomic damage required for breast cancer initiation.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"29127\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334586/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-12880-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-12880-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Matrix stiffness drives alterations in aldehyde metabolism, inducing DNA damage and transformation.
Microenvironmental stiffness regulates fundamental aspects of cell behaviour, including proliferation, differentiation and metabolism, many of which are implicated in cancer initiation and progression. In the mammary gland, extracellular matrix (ECM) stiffness, associated with high mammographic density, is linked to increased breast cancer incidence. However, a mechanistic link between increased ECM stiffness and the genomic damage required for transforming mutations remains unclear. Here we show that ECM stiffness induces changes in mammary epithelial cell (MEC) metabolism which drive DNA damage. Using a mechanically tunable 3D-culture model, we demonstrate that transcriptional changes in response to increased ECM stiffness impair the ability of MECs to remove reactive aldehydes. Downregulation of multiple aldehyde dehydrogenase isoforms in MECs within a stiffer 3D ECM leads to higher levels of reactive aldehydes, resulting in genomic damage and transformation. Together, these results provide a mechanistic link between increased ECM stiffness and the genomic damage required for breast cancer initiation.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.