Susanta Dutta, Siddhartha Ghosh, Tushnik Sarkar, Provas Kumar Roy, Chandan Paul, Ruba Abu Khurma, Mohd Asif Shah, Saurav Mallik
{"title":"基于环境可持续性的多目标电动汽车集成最优潮流热液调度的不确定性管理。","authors":"Susanta Dutta, Siddhartha Ghosh, Tushnik Sarkar, Provas Kumar Roy, Chandan Paul, Ruba Abu Khurma, Mohd Asif Shah, Saurav Mallik","doi":"10.1038/s41598-025-12757-2","DOIUrl":null,"url":null,"abstract":"<p><p>The combined heat and power economic dispatch (CHPED) and optimal power flow (OPF) are two power system optimization issues that are simultaneously studied in this work on IEEE-57 bus and IEEE 118-bus power network. The main contribution of the proposed work is to determine the OPF of CHPED problem on the IEEE 57 bus and IEEE 118 bus systems. Secondly, renewable energy sources such as wind-solar-EV are integrated with the aforesaid systems for lowering fuel cost, emission, active power loss (APL), aggregated voltage deviation (AVD), voltage stability index (VSI) and also cost, emision, APL, AVD, VSI are reduced simultaneously considering different cases for multi-objective functions.Proposed sine-cosine algorithm (SCA) embedded with quasi-oppositional based learning (QOBL), known as QOSCA is used to balance the exploration and exploitation ability in order to overcome shortcomings and provide global optimal solutions. Utilizing statistical analysis, the suggested technique's robustness has been assessed. Moreover, an analysis of variance (ANOVA) test and box plot are used to thoroughly investigate this data to provide a more precise assessment of QOSCA's robustness. After integrating wind-solar and EV, the numerical analysis for IEEE 57 bus and IEEE 118-bus utilizing QOSCA for single objective over generation cost is reduced by 21%, emission is reduced by 17.5%, APL is reduced by 0.17% and 2.59%. Additionally, the suggested method (QOSCA) is applied to a multiobjective function while taking AVD and VSI into account. This resulted in a reduction in AVD by 0.37% and VSI by 0.24%, demonstrating the superiority of the suggested method. Furthermore, it has been demonstrated that the computational efficiency in complex systems is 24% faster than that of conventional optimization methods.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"29025"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334748/pdf/","citationCount":"0","resultStr":"{\"title\":\"Uncertainty management in multiobjective electric vehicle integrated optimal power flow based hydrothermal scheduling of renewable power system for environmental sustainability.\",\"authors\":\"Susanta Dutta, Siddhartha Ghosh, Tushnik Sarkar, Provas Kumar Roy, Chandan Paul, Ruba Abu Khurma, Mohd Asif Shah, Saurav Mallik\",\"doi\":\"10.1038/s41598-025-12757-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The combined heat and power economic dispatch (CHPED) and optimal power flow (OPF) are two power system optimization issues that are simultaneously studied in this work on IEEE-57 bus and IEEE 118-bus power network. The main contribution of the proposed work is to determine the OPF of CHPED problem on the IEEE 57 bus and IEEE 118 bus systems. Secondly, renewable energy sources such as wind-solar-EV are integrated with the aforesaid systems for lowering fuel cost, emission, active power loss (APL), aggregated voltage deviation (AVD), voltage stability index (VSI) and also cost, emision, APL, AVD, VSI are reduced simultaneously considering different cases for multi-objective functions.Proposed sine-cosine algorithm (SCA) embedded with quasi-oppositional based learning (QOBL), known as QOSCA is used to balance the exploration and exploitation ability in order to overcome shortcomings and provide global optimal solutions. Utilizing statistical analysis, the suggested technique's robustness has been assessed. Moreover, an analysis of variance (ANOVA) test and box plot are used to thoroughly investigate this data to provide a more precise assessment of QOSCA's robustness. After integrating wind-solar and EV, the numerical analysis for IEEE 57 bus and IEEE 118-bus utilizing QOSCA for single objective over generation cost is reduced by 21%, emission is reduced by 17.5%, APL is reduced by 0.17% and 2.59%. Additionally, the suggested method (QOSCA) is applied to a multiobjective function while taking AVD and VSI into account. This resulted in a reduction in AVD by 0.37% and VSI by 0.24%, demonstrating the superiority of the suggested method. Furthermore, it has been demonstrated that the computational efficiency in complex systems is 24% faster than that of conventional optimization methods.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"29025\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334748/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-12757-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-12757-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Uncertainty management in multiobjective electric vehicle integrated optimal power flow based hydrothermal scheduling of renewable power system for environmental sustainability.
The combined heat and power economic dispatch (CHPED) and optimal power flow (OPF) are two power system optimization issues that are simultaneously studied in this work on IEEE-57 bus and IEEE 118-bus power network. The main contribution of the proposed work is to determine the OPF of CHPED problem on the IEEE 57 bus and IEEE 118 bus systems. Secondly, renewable energy sources such as wind-solar-EV are integrated with the aforesaid systems for lowering fuel cost, emission, active power loss (APL), aggregated voltage deviation (AVD), voltage stability index (VSI) and also cost, emision, APL, AVD, VSI are reduced simultaneously considering different cases for multi-objective functions.Proposed sine-cosine algorithm (SCA) embedded with quasi-oppositional based learning (QOBL), known as QOSCA is used to balance the exploration and exploitation ability in order to overcome shortcomings and provide global optimal solutions. Utilizing statistical analysis, the suggested technique's robustness has been assessed. Moreover, an analysis of variance (ANOVA) test and box plot are used to thoroughly investigate this data to provide a more precise assessment of QOSCA's robustness. After integrating wind-solar and EV, the numerical analysis for IEEE 57 bus and IEEE 118-bus utilizing QOSCA for single objective over generation cost is reduced by 21%, emission is reduced by 17.5%, APL is reduced by 0.17% and 2.59%. Additionally, the suggested method (QOSCA) is applied to a multiobjective function while taking AVD and VSI into account. This resulted in a reduction in AVD by 0.37% and VSI by 0.24%, demonstrating the superiority of the suggested method. Furthermore, it has been demonstrated that the computational efficiency in complex systems is 24% faster than that of conventional optimization methods.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.