Retinderdeep Singh, Sheifali Gupta, Ashraf Osman Ibrahim, Lubna A Gabralla, Salil Bharany, Ateeq Ur Rehman, Seada Hussen
{"title":"先进的动态集成框架,具有可解释性驱动的见解,用于跨数据集的精确脑肿瘤分类。","authors":"Retinderdeep Singh, Sheifali Gupta, Ashraf Osman Ibrahim, Lubna A Gabralla, Salil Bharany, Ateeq Ur Rehman, Seada Hussen","doi":"10.1038/s41598-025-14917-w","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate detection of brain tumors remains a significant challenge due to the diversity of tumor types along with human interventions during diagnostic process. This study proposes a novel ensemble deep learning system for accurate brain tumor classification using MRI data. The proposed system integrates fine-tuned Convolutional Neural Network (CNN), ResNet-50 and EfficientNet-B5 to create a dynamic ensemble framework that addresses existing challenges. An adaptive dynamic weight distribution strategy is employed during training to optimize the contribution of each networks in the framework. To address class imbalance and improve model generalization, a customized weighted cross-entropy loss function is incorporated. The model obtains improved interpretability through explainabile artificial intelligence (XAI) techniques, including Grad-CAM, SHAP, SmoothGrad, and LIME, providing deeper insights into prediction rationale. The proposed system achieves a classification accuracy of 99.4% on the test set, 99.48% on the validation set, and 99.31% in cross-dataset validation. Furthermore, entropy-based uncertainty analysis quantifies prediction confidence, yielding an average entropy of 0.3093 and effectively identifying uncertain predictions to mitigate diagnostic errors. Overall, the proposed framework demonstrates high accuracy, robustness, and interpretability, highlighting its potential for integration into automated brain tumor diagnosis systems.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"29090"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334749/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advanced dynamic ensemble framework with explainability driven insights for precision brain tumor classification across datasets.\",\"authors\":\"Retinderdeep Singh, Sheifali Gupta, Ashraf Osman Ibrahim, Lubna A Gabralla, Salil Bharany, Ateeq Ur Rehman, Seada Hussen\",\"doi\":\"10.1038/s41598-025-14917-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate detection of brain tumors remains a significant challenge due to the diversity of tumor types along with human interventions during diagnostic process. This study proposes a novel ensemble deep learning system for accurate brain tumor classification using MRI data. The proposed system integrates fine-tuned Convolutional Neural Network (CNN), ResNet-50 and EfficientNet-B5 to create a dynamic ensemble framework that addresses existing challenges. An adaptive dynamic weight distribution strategy is employed during training to optimize the contribution of each networks in the framework. To address class imbalance and improve model generalization, a customized weighted cross-entropy loss function is incorporated. The model obtains improved interpretability through explainabile artificial intelligence (XAI) techniques, including Grad-CAM, SHAP, SmoothGrad, and LIME, providing deeper insights into prediction rationale. The proposed system achieves a classification accuracy of 99.4% on the test set, 99.48% on the validation set, and 99.31% in cross-dataset validation. Furthermore, entropy-based uncertainty analysis quantifies prediction confidence, yielding an average entropy of 0.3093 and effectively identifying uncertain predictions to mitigate diagnostic errors. Overall, the proposed framework demonstrates high accuracy, robustness, and interpretability, highlighting its potential for integration into automated brain tumor diagnosis systems.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"29090\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334749/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-14917-w\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-14917-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Advanced dynamic ensemble framework with explainability driven insights for precision brain tumor classification across datasets.
Accurate detection of brain tumors remains a significant challenge due to the diversity of tumor types along with human interventions during diagnostic process. This study proposes a novel ensemble deep learning system for accurate brain tumor classification using MRI data. The proposed system integrates fine-tuned Convolutional Neural Network (CNN), ResNet-50 and EfficientNet-B5 to create a dynamic ensemble framework that addresses existing challenges. An adaptive dynamic weight distribution strategy is employed during training to optimize the contribution of each networks in the framework. To address class imbalance and improve model generalization, a customized weighted cross-entropy loss function is incorporated. The model obtains improved interpretability through explainabile artificial intelligence (XAI) techniques, including Grad-CAM, SHAP, SmoothGrad, and LIME, providing deeper insights into prediction rationale. The proposed system achieves a classification accuracy of 99.4% on the test set, 99.48% on the validation set, and 99.31% in cross-dataset validation. Furthermore, entropy-based uncertainty analysis quantifies prediction confidence, yielding an average entropy of 0.3093 and effectively identifying uncertain predictions to mitigate diagnostic errors. Overall, the proposed framework demonstrates high accuracy, robustness, and interpretability, highlighting its potential for integration into automated brain tumor diagnosis systems.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.