TSA-SAB共载脂质体自溶微针协同递送系统:肥厚性疤痕多靶点治疗的突破性双药负载策略

IF 2.5 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Lu-Lu Cheng, Jia-Hui Yu, Bi-Jin Yao, Ying-Ping Li, Rui-Xiang Peng, Jing-Hang Xu, Jun Shi
{"title":"TSA-SAB共载脂质体自溶微针协同递送系统:肥厚性疤痕多靶点治疗的突破性双药负载策略","authors":"Lu-Lu Cheng, Jia-Hui Yu, Bi-Jin Yao, Ying-Ping Li, Rui-Xiang Peng, Jing-Hang Xu, Jun Shi","doi":"10.1080/10837450.2025.2545482","DOIUrl":null,"url":null,"abstract":"<p><p>The treatment of hypertrophic scars is constrained by inefficient transdermal delivery and challenges in co-delivery of multiple drugs. Although tanshinone IIA and salvianolic acid B exhibit multi-target antifibrotic potential, their divergent physicochemical properties limit combined application. This study proposes a novel transdermal system integrating co-loaded liposomes with dissolving microneedles (DMNs). TSA-SAB liposomes were prepared <i>via</i> thin-film dispersion with pH gradient method, optimized using Box-Behnken design to overcome traditional single-factor limitations. High-efficiency co-loading was achieved for lipophilic TSA (encapsulation efficiency: 86.10%) and hydrophilic SAB (98.43%). Integration with centrifugally cast microneedles yielded loadings of 216.01 μg/patch (TSA) and 371.65 μg/patch (SAB). Leveraging microneedle-mediated penetration and liposomal sustained release, the system showed 3-fold higher transdermal efficiency than free drugs, establishing a dermal reservoir. <i>In vitro</i> release followed Higuchi model (24 h: 68.33% TSA, 76.33% SAB) without burst release. Integrating nanocarriers with microneedles, this study provides a strategy to address multi-drug incompatibility and transdermal barriers, laying groundwork for HS therapy translation.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-18"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TSA-SAB co-loaded liposome self-dissolving microneedle synergistic delivery system: a breakthrough dual-drug loading strategy for multi-target therapy of hypertrophic scars.\",\"authors\":\"Lu-Lu Cheng, Jia-Hui Yu, Bi-Jin Yao, Ying-Ping Li, Rui-Xiang Peng, Jing-Hang Xu, Jun Shi\",\"doi\":\"10.1080/10837450.2025.2545482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The treatment of hypertrophic scars is constrained by inefficient transdermal delivery and challenges in co-delivery of multiple drugs. Although tanshinone IIA and salvianolic acid B exhibit multi-target antifibrotic potential, their divergent physicochemical properties limit combined application. This study proposes a novel transdermal system integrating co-loaded liposomes with dissolving microneedles (DMNs). TSA-SAB liposomes were prepared <i>via</i> thin-film dispersion with pH gradient method, optimized using Box-Behnken design to overcome traditional single-factor limitations. High-efficiency co-loading was achieved for lipophilic TSA (encapsulation efficiency: 86.10%) and hydrophilic SAB (98.43%). Integration with centrifugally cast microneedles yielded loadings of 216.01 μg/patch (TSA) and 371.65 μg/patch (SAB). Leveraging microneedle-mediated penetration and liposomal sustained release, the system showed 3-fold higher transdermal efficiency than free drugs, establishing a dermal reservoir. <i>In vitro</i> release followed Higuchi model (24 h: 68.33% TSA, 76.33% SAB) without burst release. Integrating nanocarriers with microneedles, this study provides a strategy to address multi-drug incompatibility and transdermal barriers, laying groundwork for HS therapy translation.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2025.2545482\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2025.2545482","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

增生性疤痕的治疗受到低效率的经皮给药和多种药物联合给药的挑战的限制。虽然丹参酮IIA和丹酚酸B具有多靶点的抗纤维化潜力,但它们不同的理化性质限制了它们的联合应用。本研究提出了一种结合共载脂质体和溶解微针(DMNs)的新型透皮系统。采用pH梯度法薄膜分散制备TSA-SAB脂质体,并采用Box-Behnken设计进行优化,克服了传统的单因素限制。亲脂性TSA包封率为86.10%,亲水性SAB包封率为98.43%。与离心铸造微针结合得到的负荷量为216.01 μg/patch (TSA)和371.65 μg/patch (SAB)。利用微针介导的渗透和脂质体缓释,该系统的透皮效率比游离药物高3倍,建立了一个皮肤储库。体外释放符合Higuchi模型(24 h: 68.33% TSA, 76.33% SAB),无爆发释放。本研究将纳米载体与微针相结合,提供了一种解决多药不相容和透皮屏障的策略,为HS治疗的转化奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TSA-SAB co-loaded liposome self-dissolving microneedle synergistic delivery system: a breakthrough dual-drug loading strategy for multi-target therapy of hypertrophic scars.

The treatment of hypertrophic scars is constrained by inefficient transdermal delivery and challenges in co-delivery of multiple drugs. Although tanshinone IIA and salvianolic acid B exhibit multi-target antifibrotic potential, their divergent physicochemical properties limit combined application. This study proposes a novel transdermal system integrating co-loaded liposomes with dissolving microneedles (DMNs). TSA-SAB liposomes were prepared via thin-film dispersion with pH gradient method, optimized using Box-Behnken design to overcome traditional single-factor limitations. High-efficiency co-loading was achieved for lipophilic TSA (encapsulation efficiency: 86.10%) and hydrophilic SAB (98.43%). Integration with centrifugally cast microneedles yielded loadings of 216.01 μg/patch (TSA) and 371.65 μg/patch (SAB). Leveraging microneedle-mediated penetration and liposomal sustained release, the system showed 3-fold higher transdermal efficiency than free drugs, establishing a dermal reservoir. In vitro release followed Higuchi model (24 h: 68.33% TSA, 76.33% SAB) without burst release. Integrating nanocarriers with microneedles, this study provides a strategy to address multi-drug incompatibility and transdermal barriers, laying groundwork for HS therapy translation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
2.90%
发文量
82
审稿时长
1 months
期刊介绍: Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology. Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as: -Preformulation and pharmaceutical formulation studies -Pharmaceutical materials selection and characterization -Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation -QbD in the form a risk assessment and DoE driven approaches -Design of dosage forms and drug delivery systems -Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies -Drug delivery systems research and quality improvement -Pharmaceutical regulatory affairs This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信