为可编程skyrmion逻辑门架构量身定制的能源景观。

IF 2.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jayaseelan Dhakshinamoorthy, Hitesh Chhabra, Ajaya Kumar Nayak
{"title":"为可编程skyrmion逻辑门架构量身定制的能源景观。","authors":"Jayaseelan Dhakshinamoorthy, Hitesh Chhabra, Ajaya Kumar Nayak","doi":"10.1088/1361-6528/adf970","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic skyrmions offer an excellent prospect for the next-generation spintronic logic and memory applications due to their topological stability, nanoscale size, and efficient current-driven mobility. This work presents a programmable skyrmion-based logic architecture leveraging skyrmion-skyrmion repulsion and tunnelling through geometrically engineered racetracks. Using micromagnetic simulations, we demonstrate various logic gates (AND, OR, NOT, NAND, NOR, XOR) and a half-adder within a compact structure incorporating artificial nucleation centers, clocking notches, and annihilation zones, eliminating additional gate contacts. By carefully analysing the change in energy and the topological charge, designing and optimising logic gates to realise diverse operations with high reliability and efficiency is possible. Most importantly, our design avoids unnecessary skyrmion annihilation, reducing energy and spatial area. These results outline a scalable, energy-efficient strategy for reconfigurable logic-in-memory systems based on skyrmion dynamics.&#xD.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailored energy landscapes for programmable skyrmion logic gate architectures.\",\"authors\":\"Jayaseelan Dhakshinamoorthy, Hitesh Chhabra, Ajaya Kumar Nayak\",\"doi\":\"10.1088/1361-6528/adf970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic skyrmions offer an excellent prospect for the next-generation spintronic logic and memory applications due to their topological stability, nanoscale size, and efficient current-driven mobility. This work presents a programmable skyrmion-based logic architecture leveraging skyrmion-skyrmion repulsion and tunnelling through geometrically engineered racetracks. Using micromagnetic simulations, we demonstrate various logic gates (AND, OR, NOT, NAND, NOR, XOR) and a half-adder within a compact structure incorporating artificial nucleation centers, clocking notches, and annihilation zones, eliminating additional gate contacts. By carefully analysing the change in energy and the topological charge, designing and optimising logic gates to realise diverse operations with high reliability and efficiency is possible. Most importantly, our design avoids unnecessary skyrmion annihilation, reducing energy and spatial area. These results outline a scalable, energy-efficient strategy for reconfigurable logic-in-memory systems based on skyrmion dynamics.&#xD.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/adf970\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adf970","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于其拓扑稳定性、纳米级尺寸和高效的电流驱动迁移性,磁性skyrmions在下一代自旋电子逻辑和存储应用中具有良好的前景。这项工作提出了一个可编程的基于skyrmion的逻辑架构,利用skyrmion-skyrmion的斥力和通过几何工程赛道的隧道。利用微磁模拟,我们展示了各种逻辑门(AND, OR, NOT, NAND, NOR, XOR)和半加法器在一个紧凑的结构中,包括人工成核中心,时钟陷口和湮灭区,消除了额外的门触点。通过仔细分析能量和拓扑电荷的变化,设计和优化逻辑门,实现高可靠性和高效率的多种操作是可能的。最重要的是,我们的设计避免了不必要的天空粒子湮灭,减少了能量和空间面积。这些结果为基于skyrmion动力学的可重构内存逻辑系统概述了一种可扩展的、节能的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailored energy landscapes for programmable skyrmion logic gate architectures.

Magnetic skyrmions offer an excellent prospect for the next-generation spintronic logic and memory applications due to their topological stability, nanoscale size, and efficient current-driven mobility. This work presents a programmable skyrmion-based logic architecture leveraging skyrmion-skyrmion repulsion and tunnelling through geometrically engineered racetracks. Using micromagnetic simulations, we demonstrate various logic gates (AND, OR, NOT, NAND, NOR, XOR) and a half-adder within a compact structure incorporating artificial nucleation centers, clocking notches, and annihilation zones, eliminating additional gate contacts. By carefully analysing the change in energy and the topological charge, designing and optimising logic gates to realise diverse operations with high reliability and efficiency is possible. Most importantly, our design avoids unnecessary skyrmion annihilation, reducing energy and spatial area. These results outline a scalable, energy-efficient strategy for reconfigurable logic-in-memory systems based on skyrmion dynamics. .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信