具有光催化粘合剂的铂纳米颗粒在纺织品和表面上快速灭活病毒。

IF 3.5 3区 医学 Q3 IMMUNOLOGY
Microbial pathogenesis Pub Date : 2025-11-01 Epub Date: 2025-08-06 DOI:10.1016/j.micpath.2025.107965
Yoshiyasu Takefuji
{"title":"具有光催化粘合剂的铂纳米颗粒在纺织品和表面上快速灭活病毒。","authors":"Yoshiyasu Takefuji","doi":"10.1016/j.micpath.2025.107965","DOIUrl":null,"url":null,"abstract":"<p><p>Platinum nanoparticles combined with photocatalytic binders enable rapid virus inactivation on diverse surfaces, achieving 99.97 % reduction of Influenza A and 99.9 % of Feline Calicivirus in 15 s. This eco-efficient approach ensures uniform nanoparticle distribution, minimizing waste and offering sustainable antiviral protection for healthcare and other settings, dramatically outperforming existing solutions that require up to 5 min. We tested against Influenza A and Feline Calicivirus, with potential implications for norovirus due to similar viral structures, pending further validation. The binders' role in ensuring uniform nanoparticle distribution represents a breakthrough in sustainable protection technologies, enabling rapid virus inactivation while minimizing material usage across diverse materials including plastics, metals, ceramics, glass, and composites. In healthcare settings such as ICUs, this green technology significantly reduces waste generation and environmental impact while maintaining optimal protection against both current and emerging viral threats.</p>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":" ","pages":"107965"},"PeriodicalIF":3.5000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Platinum nanoparticles with photocatalytic binders for swift virus inactivation on textiles and surfaces.\",\"authors\":\"Yoshiyasu Takefuji\",\"doi\":\"10.1016/j.micpath.2025.107965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Platinum nanoparticles combined with photocatalytic binders enable rapid virus inactivation on diverse surfaces, achieving 99.97 % reduction of Influenza A and 99.9 % of Feline Calicivirus in 15 s. This eco-efficient approach ensures uniform nanoparticle distribution, minimizing waste and offering sustainable antiviral protection for healthcare and other settings, dramatically outperforming existing solutions that require up to 5 min. We tested against Influenza A and Feline Calicivirus, with potential implications for norovirus due to similar viral structures, pending further validation. The binders' role in ensuring uniform nanoparticle distribution represents a breakthrough in sustainable protection technologies, enabling rapid virus inactivation while minimizing material usage across diverse materials including plastics, metals, ceramics, glass, and composites. In healthcare settings such as ICUs, this green technology significantly reduces waste generation and environmental impact while maintaining optimal protection against both current and emerging viral threats.</p>\",\"PeriodicalId\":18599,\"journal\":{\"name\":\"Microbial pathogenesis\",\"volume\":\" \",\"pages\":\"107965\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial pathogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.micpath.2025.107965\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial pathogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.micpath.2025.107965","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

结合光催化粘合剂的铂纳米颗粒可以在不同的表面上快速灭活病毒,在15秒内实现99.97%的甲型流感和99.9%的猫杯状病毒的灭活。这种生态高效的方法确保纳米颗粒均匀分布,最大限度地减少浪费,并为医疗保健和其他环境提供可持续的抗病毒保护,大大优于需要长达5分钟的现有解决方案。我们对甲型流感和猫杯状病毒进行了测试,由于病毒结构相似,对诺如病毒的潜在影响有待进一步验证。粘合剂在确保纳米颗粒均匀分布方面的作用代表了可持续保护技术的突破,实现了病毒的快速灭活,同时最大限度地减少了塑料、金属、陶瓷、玻璃和复合材料等不同材料的材料使用。在icu等医疗保健环境中,这种绿色技术可显著减少废物产生和环境影响,同时保持针对当前和新出现的病毒威胁的最佳保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Platinum nanoparticles with photocatalytic binders for swift virus inactivation on textiles and surfaces.

Platinum nanoparticles combined with photocatalytic binders enable rapid virus inactivation on diverse surfaces, achieving 99.97 % reduction of Influenza A and 99.9 % of Feline Calicivirus in 15 s. This eco-efficient approach ensures uniform nanoparticle distribution, minimizing waste and offering sustainable antiviral protection for healthcare and other settings, dramatically outperforming existing solutions that require up to 5 min. We tested against Influenza A and Feline Calicivirus, with potential implications for norovirus due to similar viral structures, pending further validation. The binders' role in ensuring uniform nanoparticle distribution represents a breakthrough in sustainable protection technologies, enabling rapid virus inactivation while minimizing material usage across diverse materials including plastics, metals, ceramics, glass, and composites. In healthcare settings such as ICUs, this green technology significantly reduces waste generation and environmental impact while maintaining optimal protection against both current and emerging viral threats.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial pathogenesis
Microbial pathogenesis 医学-免疫学
CiteScore
7.40
自引率
2.60%
发文量
472
审稿时长
56 days
期刊介绍: Microbial Pathogenesis publishes original contributions and reviews about the molecular and cellular mechanisms of infectious diseases. It covers microbiology, host-pathogen interaction and immunology related to infectious agents, including bacteria, fungi, viruses and protozoa. It also accepts papers in the field of clinical microbiology, with the exception of case reports. Research Areas Include: -Pathogenesis -Virulence factors -Host susceptibility or resistance -Immune mechanisms -Identification, cloning and sequencing of relevant genes -Genetic studies -Viruses, prokaryotic organisms and protozoa -Microbiota -Systems biology related to infectious diseases -Targets for vaccine design (pre-clinical studies)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信