{"title":"使用基于生物启发的深度学习模型增强超调谐,用于准确的肺癌检测和分类。","authors":"Jyoti Kumari, Sapna Sinha, Laxman Singh","doi":"10.1177/03913988251359522","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer (LC) is one of the leading causes of cancer related deaths worldwide and early recognition is critical for enhancing patient outcomes. However, existing LC detection techniques face challenges such as high computational demands, complex data integration, scalability limitations, and difficulties in achieving rigorous clinical validation. This research proposes an Enhanced Hyper Tuning Deep Learning (EHTDL) model utilizing bioinspired algorithms to overcome these limitations and improve accuracy and efficiency of LC detection and classification. The methodology begins with the Smooth Edge Enhancement (SEE) technique for preprocessing CT images, followed by feature extraction using GLCM-based Texture Analysis. To refine the features and reduce dimensionality, a Hybrid Feature Selection approach combining Grey Wolf optimization (GWO) and Differential Evolution (DE) is employed. Precise lung segmentation is performed using Mask R-CNN to ensure accurate delineation of lung regions. A Deep Fractal Edge Classifier (DFEC) is introduced, consisting of five fractal blocks with convolutional layers and pooling to progressively learn LC characteristics. The proposed EHTDL model achieves remarkable performance metrics, including 99% accuracy, 100% precision, 98% recall, and 99% <i>F</i>1-score, demonstrating its robustness and effectiveness. The model's scalability and efficiency make it suitable for real-time clinical application offering a promising solution for early LC detection and significantly enhancing patient care.</p>","PeriodicalId":13932,"journal":{"name":"International Journal of Artificial Organs","volume":" ","pages":"3913988251359522"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced hyper tuning using bioinspired-based deep learning model for accurate lung cancer detection and classification.\",\"authors\":\"Jyoti Kumari, Sapna Sinha, Laxman Singh\",\"doi\":\"10.1177/03913988251359522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung cancer (LC) is one of the leading causes of cancer related deaths worldwide and early recognition is critical for enhancing patient outcomes. However, existing LC detection techniques face challenges such as high computational demands, complex data integration, scalability limitations, and difficulties in achieving rigorous clinical validation. This research proposes an Enhanced Hyper Tuning Deep Learning (EHTDL) model utilizing bioinspired algorithms to overcome these limitations and improve accuracy and efficiency of LC detection and classification. The methodology begins with the Smooth Edge Enhancement (SEE) technique for preprocessing CT images, followed by feature extraction using GLCM-based Texture Analysis. To refine the features and reduce dimensionality, a Hybrid Feature Selection approach combining Grey Wolf optimization (GWO) and Differential Evolution (DE) is employed. Precise lung segmentation is performed using Mask R-CNN to ensure accurate delineation of lung regions. A Deep Fractal Edge Classifier (DFEC) is introduced, consisting of five fractal blocks with convolutional layers and pooling to progressively learn LC characteristics. The proposed EHTDL model achieves remarkable performance metrics, including 99% accuracy, 100% precision, 98% recall, and 99% <i>F</i>1-score, demonstrating its robustness and effectiveness. The model's scalability and efficiency make it suitable for real-time clinical application offering a promising solution for early LC detection and significantly enhancing patient care.</p>\",\"PeriodicalId\":13932,\"journal\":{\"name\":\"International Journal of Artificial Organs\",\"volume\":\" \",\"pages\":\"3913988251359522\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Artificial Organs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03913988251359522\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Artificial Organs","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03913988251359522","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Enhanced hyper tuning using bioinspired-based deep learning model for accurate lung cancer detection and classification.
Lung cancer (LC) is one of the leading causes of cancer related deaths worldwide and early recognition is critical for enhancing patient outcomes. However, existing LC detection techniques face challenges such as high computational demands, complex data integration, scalability limitations, and difficulties in achieving rigorous clinical validation. This research proposes an Enhanced Hyper Tuning Deep Learning (EHTDL) model utilizing bioinspired algorithms to overcome these limitations and improve accuracy and efficiency of LC detection and classification. The methodology begins with the Smooth Edge Enhancement (SEE) technique for preprocessing CT images, followed by feature extraction using GLCM-based Texture Analysis. To refine the features and reduce dimensionality, a Hybrid Feature Selection approach combining Grey Wolf optimization (GWO) and Differential Evolution (DE) is employed. Precise lung segmentation is performed using Mask R-CNN to ensure accurate delineation of lung regions. A Deep Fractal Edge Classifier (DFEC) is introduced, consisting of five fractal blocks with convolutional layers and pooling to progressively learn LC characteristics. The proposed EHTDL model achieves remarkable performance metrics, including 99% accuracy, 100% precision, 98% recall, and 99% F1-score, demonstrating its robustness and effectiveness. The model's scalability and efficiency make it suitable for real-time clinical application offering a promising solution for early LC detection and significantly enhancing patient care.
期刊介绍:
The International Journal of Artificial Organs (IJAO) publishes peer-reviewed research and clinical, experimental and theoretical, contributions to the field of artificial, bioartificial and tissue-engineered organs. The mission of the IJAO is to foster the development and optimization of artificial, bioartificial and tissue-engineered organs, for implantation or use in procedures, to treat functional deficits of all human tissues and organs.