{"title":"切尔诺贝利核电站灾难后放射性核素去除的植物修复潜力。","authors":"Erin Lincoln, Azam Noori","doi":"10.1080/15226514.2025.2542559","DOIUrl":null,"url":null,"abstract":"<p><p>The Chernobyl Nuclear Power Plant (CNPP) disaster in 1986 released significant amounts of radiocesium (<sup>137</sup>Cs), radiostrontium (<sup>90</sup>Sr), and radioiodine (<sup>131</sup>I) across Europe and eastern areas of Russia, leading to widespread environmental contamination that negatively impacted human health and harmed flora and fauna in a variety of terrestrial and aquatic ecosystems. The long-term effects of the Chernobyl incident remain a persistent concern, particularly due to radiocesium which has a half-life of 30.17 years, and various environmental and human-driven events that continue to resuspend radionuclides into the environment. Nearly four decades after the incident, various remediation efforts have been implemented, including physical, chemical, and biological approaches. However, no method has proven to be completely effective, and the significant remaining contamination necessitates the implementation of new strategies for remediation. Some of the most promising remediation techniques fall under the science of bioremediation; the use of bacteria, algae, fungi, and plants to remove contaminants from the environment. Phytoremediation is promising due to its environmentally friendly nature and its cost. This review article examines the environmental impacts of the Chernobyl fallout, evaluates remediation efforts over the past four decades, and explores emerging phytoremediation strategies that could enhance radionuclide removal from contaminated terrestrial and aquatic environments.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-13"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phytoremediation potential for radionuclide removal following the Chernobyl Nuclear Power Plant disaster.\",\"authors\":\"Erin Lincoln, Azam Noori\",\"doi\":\"10.1080/15226514.2025.2542559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Chernobyl Nuclear Power Plant (CNPP) disaster in 1986 released significant amounts of radiocesium (<sup>137</sup>Cs), radiostrontium (<sup>90</sup>Sr), and radioiodine (<sup>131</sup>I) across Europe and eastern areas of Russia, leading to widespread environmental contamination that negatively impacted human health and harmed flora and fauna in a variety of terrestrial and aquatic ecosystems. The long-term effects of the Chernobyl incident remain a persistent concern, particularly due to radiocesium which has a half-life of 30.17 years, and various environmental and human-driven events that continue to resuspend radionuclides into the environment. Nearly four decades after the incident, various remediation efforts have been implemented, including physical, chemical, and biological approaches. However, no method has proven to be completely effective, and the significant remaining contamination necessitates the implementation of new strategies for remediation. Some of the most promising remediation techniques fall under the science of bioremediation; the use of bacteria, algae, fungi, and plants to remove contaminants from the environment. Phytoremediation is promising due to its environmentally friendly nature and its cost. This review article examines the environmental impacts of the Chernobyl fallout, evaluates remediation efforts over the past four decades, and explores emerging phytoremediation strategies that could enhance radionuclide removal from contaminated terrestrial and aquatic environments.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2025.2542559\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2542559","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Phytoremediation potential for radionuclide removal following the Chernobyl Nuclear Power Plant disaster.
The Chernobyl Nuclear Power Plant (CNPP) disaster in 1986 released significant amounts of radiocesium (137Cs), radiostrontium (90Sr), and radioiodine (131I) across Europe and eastern areas of Russia, leading to widespread environmental contamination that negatively impacted human health and harmed flora and fauna in a variety of terrestrial and aquatic ecosystems. The long-term effects of the Chernobyl incident remain a persistent concern, particularly due to radiocesium which has a half-life of 30.17 years, and various environmental and human-driven events that continue to resuspend radionuclides into the environment. Nearly four decades after the incident, various remediation efforts have been implemented, including physical, chemical, and biological approaches. However, no method has proven to be completely effective, and the significant remaining contamination necessitates the implementation of new strategies for remediation. Some of the most promising remediation techniques fall under the science of bioremediation; the use of bacteria, algae, fungi, and plants to remove contaminants from the environment. Phytoremediation is promising due to its environmentally friendly nature and its cost. This review article examines the environmental impacts of the Chernobyl fallout, evaluates remediation efforts over the past four decades, and explores emerging phytoremediation strategies that could enhance radionuclide removal from contaminated terrestrial and aquatic environments.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.