Amir Sadikov, Hannah L Choi, Lanya T Cai, Pratik Mukherjee
{"title":"用扩散MRI估计大脑相似网络。","authors":"Amir Sadikov, Hannah L Choi, Lanya T Cai, Pratik Mukherjee","doi":"10.1002/hbm.70313","DOIUrl":null,"url":null,"abstract":"<p><p>Structural similarity has emerged as a promising tool in mapping the network organization of an individual, living human brain. Here, we propose diffusion similarity networks (DSNs), which employ rotationally invariant spherical harmonic features derived from diffusion magnetic resonance imaging (dMRI), to map gray matter structural organization. Compared to prior approaches, DSNs showed clearer laminar, cytoarchitectural, and micro-architectural organization; greater sensitivity to age, cognition, and sex; higher heritability in a large dataset of healthy young adults; and straightforward extension to non-cortical regions. We show DSNs are correlated with functional, structural, and gene expression connectomes, and their gradients align with the sensory-fugal and sensorimotor-association axes of the cerebral cortex, including neuronal oscillatory dynamics, metabolism, immunity, and dopaminergic and glutaminergic receptor densities. DSNs can be easily integrated into conventional dMRI analysis, adding information complementary to structural white matter connectivity, and could prove useful in investigating a wide array of neurological and psychiatric conditions.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 11","pages":"e70313"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335008/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimating Brain Similarity Networks With Diffusion MRI.\",\"authors\":\"Amir Sadikov, Hannah L Choi, Lanya T Cai, Pratik Mukherjee\",\"doi\":\"10.1002/hbm.70313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structural similarity has emerged as a promising tool in mapping the network organization of an individual, living human brain. Here, we propose diffusion similarity networks (DSNs), which employ rotationally invariant spherical harmonic features derived from diffusion magnetic resonance imaging (dMRI), to map gray matter structural organization. Compared to prior approaches, DSNs showed clearer laminar, cytoarchitectural, and micro-architectural organization; greater sensitivity to age, cognition, and sex; higher heritability in a large dataset of healthy young adults; and straightforward extension to non-cortical regions. We show DSNs are correlated with functional, structural, and gene expression connectomes, and their gradients align with the sensory-fugal and sensorimotor-association axes of the cerebral cortex, including neuronal oscillatory dynamics, metabolism, immunity, and dopaminergic and glutaminergic receptor densities. DSNs can be easily integrated into conventional dMRI analysis, adding information complementary to structural white matter connectivity, and could prove useful in investigating a wide array of neurological and psychiatric conditions.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 11\",\"pages\":\"e70313\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335008/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/hbm.70313\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/hbm.70313","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Estimating Brain Similarity Networks With Diffusion MRI.
Structural similarity has emerged as a promising tool in mapping the network organization of an individual, living human brain. Here, we propose diffusion similarity networks (DSNs), which employ rotationally invariant spherical harmonic features derived from diffusion magnetic resonance imaging (dMRI), to map gray matter structural organization. Compared to prior approaches, DSNs showed clearer laminar, cytoarchitectural, and micro-architectural organization; greater sensitivity to age, cognition, and sex; higher heritability in a large dataset of healthy young adults; and straightforward extension to non-cortical regions. We show DSNs are correlated with functional, structural, and gene expression connectomes, and their gradients align with the sensory-fugal and sensorimotor-association axes of the cerebral cortex, including neuronal oscillatory dynamics, metabolism, immunity, and dopaminergic and glutaminergic receptor densities. DSNs can be easily integrated into conventional dMRI analysis, adding information complementary to structural white matter connectivity, and could prove useful in investigating a wide array of neurological and psychiatric conditions.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.