人线粒体cyp2e1介导的苯乙烯代谢增加秀丽隐杆线虫的氧化应激并损害抗氧化修复。

IF 4.3 3区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Amanda Ameyaa-Sakyi, Todd R Harris, Colleen E Clarke, David R McMullin, Kacy L Gordon, David Sherwood, Jessica H Hartman, Amy A Rand
{"title":"人线粒体cyp2e1介导的苯乙烯代谢增加秀丽隐杆线虫的氧化应激并损害抗氧化修复。","authors":"Amanda Ameyaa-Sakyi, Todd R Harris, Colleen E Clarke, David R McMullin, Kacy L Gordon, David Sherwood, Jessica H Hartman, Amy A Rand","doi":"10.1016/j.cbpc.2025.110319","DOIUrl":null,"url":null,"abstract":"<p><p>Styrene is an environmental toxicant metabolized by cytochrome P450 2E1 (CYP2E1) to styrene oxide, a reactive intermediate product linked to oxidative stress. While the role of CYP2E1 in xenobiotic metabolism is well established, the influence of subcellular enzyme localization on styrene-induced toxicity remains unclear. This study used transgenic Caenorhabditis elegans (C. elegans) strains expressing CYP2E1 in different compartments, mitochondrial-derived (mtCYP2E1) and endoplasmic reticulum-derived (erCYP2E1), to investigate the impact of CYP2E1-mediated styrene metabolism on survival and oxidative stress. CYP2E1 containing C. elegans strains were also compared to a wildtype strain (N2) lacking CYP2E1. Styrene exposure significantly decreased survival across all strains. Antioxidant rescue assays revealed that Trolox and N-acetyl cysteine (NAC) improved survival in the N2 and erCYP2E1 C. elegans strains but not in mtCYP2E1, indicating a distinct oxidative stress mechanism in mitochondrial CYP2E1 metabolism. Fluorescent microscopy confirmed that ROS levels increased with styrene exposure, particularly in mtCYP2E1 C. elegans, where ROS levels were up to two-fold higher than in other strains. GC-MS analysis detected elevated styrene glycol production in styrene-exposed mtCYP2E1 C. elegans relative to N2 and erCYP2E1 strains. Given styrene oxide is a known cytotoxic intermediate, its accumulation in the mtCYP2E1 strain likely contributes to the observed oxidative stress and decreased survival. These findings suggest that CYP2E1 subcellular localization influences styrene metabolism and toxicity, with mitochondrial CYP2E1 potentially promoting higher oxidative stress and reduced detoxification efficiency. A better understanding of these mechanisms could provide insight into xenobiotic metabolism, environmental toxicology, and disease pathogenesis associated with CYP2E1-mediated oxidative stress.</p>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":" ","pages":"110319"},"PeriodicalIF":4.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human mitochondrial CYP2E1-mediated styrene metabolism increases oxidative stress and impairs antioxidant rescue in Caenorhabditis elegans.\",\"authors\":\"Amanda Ameyaa-Sakyi, Todd R Harris, Colleen E Clarke, David R McMullin, Kacy L Gordon, David Sherwood, Jessica H Hartman, Amy A Rand\",\"doi\":\"10.1016/j.cbpc.2025.110319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Styrene is an environmental toxicant metabolized by cytochrome P450 2E1 (CYP2E1) to styrene oxide, a reactive intermediate product linked to oxidative stress. While the role of CYP2E1 in xenobiotic metabolism is well established, the influence of subcellular enzyme localization on styrene-induced toxicity remains unclear. This study used transgenic Caenorhabditis elegans (C. elegans) strains expressing CYP2E1 in different compartments, mitochondrial-derived (mtCYP2E1) and endoplasmic reticulum-derived (erCYP2E1), to investigate the impact of CYP2E1-mediated styrene metabolism on survival and oxidative stress. CYP2E1 containing C. elegans strains were also compared to a wildtype strain (N2) lacking CYP2E1. Styrene exposure significantly decreased survival across all strains. Antioxidant rescue assays revealed that Trolox and N-acetyl cysteine (NAC) improved survival in the N2 and erCYP2E1 C. elegans strains but not in mtCYP2E1, indicating a distinct oxidative stress mechanism in mitochondrial CYP2E1 metabolism. Fluorescent microscopy confirmed that ROS levels increased with styrene exposure, particularly in mtCYP2E1 C. elegans, where ROS levels were up to two-fold higher than in other strains. GC-MS analysis detected elevated styrene glycol production in styrene-exposed mtCYP2E1 C. elegans relative to N2 and erCYP2E1 strains. Given styrene oxide is a known cytotoxic intermediate, its accumulation in the mtCYP2E1 strain likely contributes to the observed oxidative stress and decreased survival. These findings suggest that CYP2E1 subcellular localization influences styrene metabolism and toxicity, with mitochondrial CYP2E1 potentially promoting higher oxidative stress and reduced detoxification efficiency. A better understanding of these mechanisms could provide insight into xenobiotic metabolism, environmental toxicology, and disease pathogenesis associated with CYP2E1-mediated oxidative stress.</p>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":\" \",\"pages\":\"110319\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cbpc.2025.110319\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.cbpc.2025.110319","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

苯乙烯是一种环境毒物,由细胞色素P450 2E1 (CYP2E1)代谢为苯乙烯氧化物,苯乙烯氧化物是一种与氧化应激有关的反应性中间产物。虽然CYP2E1在外源代谢中的作用已经确定,但亚细胞酶定位对苯乙烯诱导毒性的影响尚不清楚。本研究利用在线粒体源性(mtCYP2E1)和内质网源性(erCYP2E1)中表达CYP2E1的转基因秀丽隐杆线虫(C. elegans)菌株,研究了CYP2E1介导的苯乙烯代谢对存活和氧化应激的影响。含有CYP2E1的秀丽隐杆线虫菌株也与缺乏CYP2E1的野生型菌株(N2)进行了比较。苯乙烯暴露显著降低了所有菌株的存活率。抗氧化拯救实验显示,Trolox和n -乙酰半胱氨酸(NAC)提高了N2和erCYP2E1秀丽隐杆线虫菌株的存活率,但对mtCYP2E1没有作用,这表明线粒体CYP2E1代谢中存在明显的氧化应激机制。荧光显微镜证实,ROS水平随着苯乙烯暴露而增加,特别是在mtCYP2E1秀丽线虫中,其ROS水平比其他菌株高出两倍。GC-MS分析发现,相对于N2和erCYP2E1菌株,暴露于苯乙烯的mtCYP2E1秀丽隐杆线虫的苯乙烯乙二醇产量升高。鉴于苯乙烯氧化物是一种已知的细胞毒性中间体,其在mtCYP2E1菌株中的积累可能导致观察到的氧化应激和存活率下降。这些研究结果表明,CYP2E1亚细胞定位影响苯乙烯代谢和毒性,线粒体CYP2E1可能促进氧化应激升高和解毒效率降低。更好地了解这些机制可以深入了解与cyp2e1介导的氧化应激相关的外源代谢、环境毒理学和疾病发病机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human mitochondrial CYP2E1-mediated styrene metabolism increases oxidative stress and impairs antioxidant rescue in Caenorhabditis elegans.

Styrene is an environmental toxicant metabolized by cytochrome P450 2E1 (CYP2E1) to styrene oxide, a reactive intermediate product linked to oxidative stress. While the role of CYP2E1 in xenobiotic metabolism is well established, the influence of subcellular enzyme localization on styrene-induced toxicity remains unclear. This study used transgenic Caenorhabditis elegans (C. elegans) strains expressing CYP2E1 in different compartments, mitochondrial-derived (mtCYP2E1) and endoplasmic reticulum-derived (erCYP2E1), to investigate the impact of CYP2E1-mediated styrene metabolism on survival and oxidative stress. CYP2E1 containing C. elegans strains were also compared to a wildtype strain (N2) lacking CYP2E1. Styrene exposure significantly decreased survival across all strains. Antioxidant rescue assays revealed that Trolox and N-acetyl cysteine (NAC) improved survival in the N2 and erCYP2E1 C. elegans strains but not in mtCYP2E1, indicating a distinct oxidative stress mechanism in mitochondrial CYP2E1 metabolism. Fluorescent microscopy confirmed that ROS levels increased with styrene exposure, particularly in mtCYP2E1 C. elegans, where ROS levels were up to two-fold higher than in other strains. GC-MS analysis detected elevated styrene glycol production in styrene-exposed mtCYP2E1 C. elegans relative to N2 and erCYP2E1 strains. Given styrene oxide is a known cytotoxic intermediate, its accumulation in the mtCYP2E1 strain likely contributes to the observed oxidative stress and decreased survival. These findings suggest that CYP2E1 subcellular localization influences styrene metabolism and toxicity, with mitochondrial CYP2E1 potentially promoting higher oxidative stress and reduced detoxification efficiency. A better understanding of these mechanisms could provide insight into xenobiotic metabolism, environmental toxicology, and disease pathogenesis associated with CYP2E1-mediated oxidative stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
5.10%
发文量
206
审稿时长
30 days
期刊介绍: Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信