{"title":"机械感觉生物学中的Piezo2:从生理稳态到疾病促进机制。","authors":"Zhebin Cheng, Zuping Wu, Mengjie Wu, Liang Xie, Qianming Chen","doi":"10.1111/cpr.70112","DOIUrl":null,"url":null,"abstract":"<p><p>Piezo2, a mechanically activated ion channel, serves as the key molecular transducer for touch, proprioception and visceral sensation. These mechanosensation processes, where mechanical forces are converted into electrochemical signals, are essential for sensory perception, interoception and systemic homeostasis. Critically, Piezo2 channels are fundamental to diverse physiological functions, such as skeletal growth, respiratory development and inter-organ homeostasis. Despite its established role in sensory neurons and specialised mechanotransducers, the molecular intricacy of Piezo2-mediated signalling and its pathophysiological relevance remain incompletely understood. This review highlights key evidence from recent studies employing advanced technologies supporting the potential of Piezo2 channels as vital mechanosensor that regulate mechanotransduction cascades in physiological systems, demonstrating their potential as drug targets for the development of therapeutic agents.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70112"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piezo2 in Mechanosensory Biology: From Physiological Homeostasis to Disease-Promoting Mechanisms.\",\"authors\":\"Zhebin Cheng, Zuping Wu, Mengjie Wu, Liang Xie, Qianming Chen\",\"doi\":\"10.1111/cpr.70112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Piezo2, a mechanically activated ion channel, serves as the key molecular transducer for touch, proprioception and visceral sensation. These mechanosensation processes, where mechanical forces are converted into electrochemical signals, are essential for sensory perception, interoception and systemic homeostasis. Critically, Piezo2 channels are fundamental to diverse physiological functions, such as skeletal growth, respiratory development and inter-organ homeostasis. Despite its established role in sensory neurons and specialised mechanotransducers, the molecular intricacy of Piezo2-mediated signalling and its pathophysiological relevance remain incompletely understood. This review highlights key evidence from recent studies employing advanced technologies supporting the potential of Piezo2 channels as vital mechanosensor that regulate mechanotransduction cascades in physiological systems, demonstrating their potential as drug targets for the development of therapeutic agents.</p>\",\"PeriodicalId\":9760,\"journal\":{\"name\":\"Cell Proliferation\",\"volume\":\" \",\"pages\":\"e70112\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Proliferation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/cpr.70112\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.70112","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Piezo2 in Mechanosensory Biology: From Physiological Homeostasis to Disease-Promoting Mechanisms.
Piezo2, a mechanically activated ion channel, serves as the key molecular transducer for touch, proprioception and visceral sensation. These mechanosensation processes, where mechanical forces are converted into electrochemical signals, are essential for sensory perception, interoception and systemic homeostasis. Critically, Piezo2 channels are fundamental to diverse physiological functions, such as skeletal growth, respiratory development and inter-organ homeostasis. Despite its established role in sensory neurons and specialised mechanotransducers, the molecular intricacy of Piezo2-mediated signalling and its pathophysiological relevance remain incompletely understood. This review highlights key evidence from recent studies employing advanced technologies supporting the potential of Piezo2 channels as vital mechanosensor that regulate mechanotransduction cascades in physiological systems, demonstrating their potential as drug targets for the development of therapeutic agents.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.