创伤弧菌血红素受体的开关行为。

IF 2.2 4区 数学 Q2 BIOLOGY
Kathryn S Lynch, James P Keener
{"title":"创伤弧菌血红素受体的开关行为。","authors":"Kathryn S Lynch, James P Keener","doi":"10.1007/s11538-025-01505-2","DOIUrl":null,"url":null,"abstract":"<p><p>Switch-like behavior and bistability are important features in gene regulatory networks, allowing cells to distinguish between changing environments and express certain genes only under the appropriate conditions. Vibrio vulnificus, an opportunistic Gram-negative marine pathogen, has iron as a limiting growth factor. When inside a human host, this bacteria utilizes heme as a source of iron, necessitating the ability to turn this heme acquisition system off and on in response to environmental pressures. As establishment of infection depends on V. vulnificus's ability to change from a marine to human environment, the ability to switch on the heme-intake system is an important part of establishment of initial infection. In particular, the protein HupA is a key part of the bacteria's heme importation complex, and is regulated primarily by a divergently transcribed protein, HupR. The dynamics of this regulation result in a genetic switch, allowing the bacteria to differentiate between high iron or high heme environments, determining which source of iron should be used. Bifurcation analysis of this network uncovers a saddle-node bifurcation, which encodes this switch-like behavior into the regulation of the heme transport system and allows different levels of expression for HupA depending on external concentrations of heme and iron. The influences of other parameters in this system are also investigated; in particular, promoter leakage is found to be required to enable this bistability, indicating the importance of imperfect regulation in a cell's ability to respond to the environment.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 9","pages":"125"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335394/pdf/","citationCount":"0","resultStr":"{\"title\":\"Switch-like Behavior in the Heme Receptor for Vibrio Vulnificus.\",\"authors\":\"Kathryn S Lynch, James P Keener\",\"doi\":\"10.1007/s11538-025-01505-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Switch-like behavior and bistability are important features in gene regulatory networks, allowing cells to distinguish between changing environments and express certain genes only under the appropriate conditions. Vibrio vulnificus, an opportunistic Gram-negative marine pathogen, has iron as a limiting growth factor. When inside a human host, this bacteria utilizes heme as a source of iron, necessitating the ability to turn this heme acquisition system off and on in response to environmental pressures. As establishment of infection depends on V. vulnificus's ability to change from a marine to human environment, the ability to switch on the heme-intake system is an important part of establishment of initial infection. In particular, the protein HupA is a key part of the bacteria's heme importation complex, and is regulated primarily by a divergently transcribed protein, HupR. The dynamics of this regulation result in a genetic switch, allowing the bacteria to differentiate between high iron or high heme environments, determining which source of iron should be used. Bifurcation analysis of this network uncovers a saddle-node bifurcation, which encodes this switch-like behavior into the regulation of the heme transport system and allows different levels of expression for HupA depending on external concentrations of heme and iron. The influences of other parameters in this system are also investigated; in particular, promoter leakage is found to be required to enable this bistability, indicating the importance of imperfect regulation in a cell's ability to respond to the environment.</p>\",\"PeriodicalId\":9372,\"journal\":{\"name\":\"Bulletin of Mathematical Biology\",\"volume\":\"87 9\",\"pages\":\"125\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335394/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-025-01505-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-025-01505-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

开关样行为和双稳定性是基因调控网络的重要特征,使细胞能够区分不断变化的环境,并仅在适当的条件下表达某些基因。创伤弧菌是一种机会性革兰氏阴性海洋病原体,它的限制性生长因子是铁。当在人类宿主体内时,这种细菌利用血红素作为铁的来源,需要有能力关闭和打开这个血红素获取系统来应对环境压力。由于感染的建立取决于创伤弧菌从海洋环境转变为人类环境的能力,因此开启血红素摄取系统的能力是建立初始感染的重要组成部分。特别是,蛋白质HupA是细菌血红素输入复合物的关键部分,主要由发散转录的蛋白质HupR调节。这种调控的动态导致了一种基因开关,允许细菌区分高铁或高血红素环境,决定应该使用哪种铁来源。对该网络的分岔分析揭示了一个鞍节点分岔,该分岔将这种开关样行为编码为血红素运输系统的调节,并允许HupA根据外部血红素和铁浓度的不同水平表达。研究了其他参数对系统性能的影响;特别是,启动子泄漏被发现是实现这种双稳定性所必需的,这表明了细胞对环境反应能力的不完美调节的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Switch-like Behavior in the Heme Receptor for Vibrio Vulnificus.

Switch-like behavior and bistability are important features in gene regulatory networks, allowing cells to distinguish between changing environments and express certain genes only under the appropriate conditions. Vibrio vulnificus, an opportunistic Gram-negative marine pathogen, has iron as a limiting growth factor. When inside a human host, this bacteria utilizes heme as a source of iron, necessitating the ability to turn this heme acquisition system off and on in response to environmental pressures. As establishment of infection depends on V. vulnificus's ability to change from a marine to human environment, the ability to switch on the heme-intake system is an important part of establishment of initial infection. In particular, the protein HupA is a key part of the bacteria's heme importation complex, and is regulated primarily by a divergently transcribed protein, HupR. The dynamics of this regulation result in a genetic switch, allowing the bacteria to differentiate between high iron or high heme environments, determining which source of iron should be used. Bifurcation analysis of this network uncovers a saddle-node bifurcation, which encodes this switch-like behavior into the regulation of the heme transport system and allows different levels of expression for HupA depending on external concentrations of heme and iron. The influences of other parameters in this system are also investigated; in particular, promoter leakage is found to be required to enable this bistability, indicating the importance of imperfect regulation in a cell's ability to respond to the environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信