啤酒、燃料和阿片类药物:扩大酵母埃利希途径用于化学和制药制造。

IF 12.5 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Biotechnology advances Pub Date : 2025-11-01 Epub Date: 2025-08-06 DOI:10.1016/j.biotechadv.2025.108684
Anastasia E C Rumpl, Joshua R Goodhew, Paul F Kelly, Mika Hirano, Michael E Pyne
{"title":"啤酒、燃料和阿片类药物:扩大酵母埃利希途径用于化学和制药制造。","authors":"Anastasia E C Rumpl, Joshua R Goodhew, Paul F Kelly, Mika Hirano, Michael E Pyne","doi":"10.1016/j.biotechadv.2025.108684","DOIUrl":null,"url":null,"abstract":"<p><p>The Ehrlich pathway is a catabolic process that imparts Saccharomyces cerevisiae and other yeasts with the ability to utilize branched-chain and aromatic amino acids as a source of nitrogen. Using this route, amino acids are transaminated to α-keto acids and the liberated ammonia is utilized for assimilatory reactions. This process leaves behind an array of aliphatic and aromatic carbon skeletons (fusel metabolites) that have found a multitude of uses in the production of flavors, chemicals, and pharmaceuticals. This review provides an update on the genetics and biochemistry of the Ehrlich pathway with an emphasis on the biotechnological valorization of fusel metabolites. We outline the impact of fusel metabolism on the organoleptic properties of fermented beverages and recap ongoing efforts to repurpose the Ehrlich pathway for production of advanced biofuels. We also highlight recent activity directed at producing opioids and other plant benzylisoquinolines, as well as engineering new-to-nature alkaloids by rewiring the yeast Ehrlich pathway. Collectively, these efforts have stimulated a deeper understanding of yeast fusel metabolism and opened new opportunities for biomanufacturing using conventional and non-conventional yeasts.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108684"},"PeriodicalIF":12.5000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brews, fuels, and opioids: Expanding the yeast Ehrlich pathway for chemical and pharmaceutical manufacturing.\",\"authors\":\"Anastasia E C Rumpl, Joshua R Goodhew, Paul F Kelly, Mika Hirano, Michael E Pyne\",\"doi\":\"10.1016/j.biotechadv.2025.108684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Ehrlich pathway is a catabolic process that imparts Saccharomyces cerevisiae and other yeasts with the ability to utilize branched-chain and aromatic amino acids as a source of nitrogen. Using this route, amino acids are transaminated to α-keto acids and the liberated ammonia is utilized for assimilatory reactions. This process leaves behind an array of aliphatic and aromatic carbon skeletons (fusel metabolites) that have found a multitude of uses in the production of flavors, chemicals, and pharmaceuticals. This review provides an update on the genetics and biochemistry of the Ehrlich pathway with an emphasis on the biotechnological valorization of fusel metabolites. We outline the impact of fusel metabolism on the organoleptic properties of fermented beverages and recap ongoing efforts to repurpose the Ehrlich pathway for production of advanced biofuels. We also highlight recent activity directed at producing opioids and other plant benzylisoquinolines, as well as engineering new-to-nature alkaloids by rewiring the yeast Ehrlich pathway. Collectively, these efforts have stimulated a deeper understanding of yeast fusel metabolism and opened new opportunities for biomanufacturing using conventional and non-conventional yeasts.</p>\",\"PeriodicalId\":8946,\"journal\":{\"name\":\"Biotechnology advances\",\"volume\":\" \",\"pages\":\"108684\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology advances\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biotechadv.2025.108684\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biotechadv.2025.108684","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

埃利希途径是一种分解代谢过程,赋予酿酒酵母和其他酵母利用支链氨基酸和芳香氨基酸作为氮源的能力。通过这种途径,氨基酸被转胺为α-酮酸,释放的氨被用于同化反应。这一过程留下了一系列脂肪族和芳香碳骨架(杂醇化代谢物),它们在香精、化学品和药品的生产中有着广泛的用途。这篇综述提供了埃利希途径的遗传学和生物化学方面的最新进展,重点是燃料代谢物的生物技术增值。我们概述了燃料代谢对发酵饮料的感官特性的影响,并概述了正在进行的重新利用埃利希途径生产先进生物燃料的努力。我们还强调了最近针对生产阿片类药物和其他植物苯基异喹啉的活动,以及通过重新连接酵母埃利希途径来设计新的自然生物碱。总的来说,这些努力刺激了对酵母燃料代谢的更深层次的理解,并为使用传统和非传统酵母的生物制造开辟了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brews, fuels, and opioids: Expanding the yeast Ehrlich pathway for chemical and pharmaceutical manufacturing.

The Ehrlich pathway is a catabolic process that imparts Saccharomyces cerevisiae and other yeasts with the ability to utilize branched-chain and aromatic amino acids as a source of nitrogen. Using this route, amino acids are transaminated to α-keto acids and the liberated ammonia is utilized for assimilatory reactions. This process leaves behind an array of aliphatic and aromatic carbon skeletons (fusel metabolites) that have found a multitude of uses in the production of flavors, chemicals, and pharmaceuticals. This review provides an update on the genetics and biochemistry of the Ehrlich pathway with an emphasis on the biotechnological valorization of fusel metabolites. We outline the impact of fusel metabolism on the organoleptic properties of fermented beverages and recap ongoing efforts to repurpose the Ehrlich pathway for production of advanced biofuels. We also highlight recent activity directed at producing opioids and other plant benzylisoquinolines, as well as engineering new-to-nature alkaloids by rewiring the yeast Ehrlich pathway. Collectively, these efforts have stimulated a deeper understanding of yeast fusel metabolism and opened new opportunities for biomanufacturing using conventional and non-conventional yeasts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology advances
Biotechnology advances 工程技术-生物工程与应用微生物
CiteScore
25.50
自引率
2.50%
发文量
167
审稿时长
37 days
期刊介绍: Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信