Laura Supp, Jan Oldenburg, Matthias Leuchter, Jan Brüning, Claudio Capelli, Alper Öner, Klaus-Peter Schmitz, Michael Stiehm, Finja Borowski
{"title":"经导管主动脉瓣置换术中钙化对瓣旁渗漏的影响:来自一项新的计算机临床试验框架的发现。","authors":"Laura Supp, Jan Oldenburg, Matthias Leuchter, Jan Brüning, Claudio Capelli, Alper Öner, Klaus-Peter Schmitz, Michael Stiehm, Finja Borowski","doi":"10.1007/s10237-025-01984-1","DOIUrl":null,"url":null,"abstract":"<div><p>Transcatheter aortic valve replacement (TAVR) has revolutionized the treatment of severe aortic stenosis, yet paravalvular leakage (PVL) remains a significant complication, associated with increased mortality. Clinical studies have identified correlations between PVL and both anatomical features and calcification patterns. Numerical simulations, particularly patient-specific models, offer valuable insights into PVL, but the limited scale of these studies hinders robust statistical analysis. This study introduces a novel <i>in silico</i> clinical trial (ISCT) framework to investigate the correlation between calcification severity, localization and PVL. For this purpose, a synthetic cohort of calcified aortic roots was generated. A conditional convolutional variational autoencoder was used to create calcification patterns for an existing virtual cohort of the aortic root. The workflow includes finite element analyses for pre-dilation and deployment simulations as well as computational fluid dynamic simulations for PVL calculations of 243 virtual TAVR patients. The results show that the absolute amount of calcification in the device landing zone has no significant influence, but its regional distribution does, especially in the combined leaflet regions. In addition, sinotubular junction diameter, annular eccentricity index, oversizing as well as the combination of aortic angle and calcification in the combined non and left coronary leaflet region influence the occurrence of PVL. This framework not only advances our understanding of PVL mechanisms but also demonstrates the potential of ISCT to complement traditional clinical studies, enabling systematic exploration of complex factors influencing TAVR outcomes.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"24 5","pages":"1605 - 1618"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10237-025-01984-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Impact of calcifications on paravalvular leakage by transcatheter aortic valve prostheses: findings from a new in silico clinical trial framework\",\"authors\":\"Laura Supp, Jan Oldenburg, Matthias Leuchter, Jan Brüning, Claudio Capelli, Alper Öner, Klaus-Peter Schmitz, Michael Stiehm, Finja Borowski\",\"doi\":\"10.1007/s10237-025-01984-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transcatheter aortic valve replacement (TAVR) has revolutionized the treatment of severe aortic stenosis, yet paravalvular leakage (PVL) remains a significant complication, associated with increased mortality. Clinical studies have identified correlations between PVL and both anatomical features and calcification patterns. Numerical simulations, particularly patient-specific models, offer valuable insights into PVL, but the limited scale of these studies hinders robust statistical analysis. This study introduces a novel <i>in silico</i> clinical trial (ISCT) framework to investigate the correlation between calcification severity, localization and PVL. For this purpose, a synthetic cohort of calcified aortic roots was generated. A conditional convolutional variational autoencoder was used to create calcification patterns for an existing virtual cohort of the aortic root. The workflow includes finite element analyses for pre-dilation and deployment simulations as well as computational fluid dynamic simulations for PVL calculations of 243 virtual TAVR patients. The results show that the absolute amount of calcification in the device landing zone has no significant influence, but its regional distribution does, especially in the combined leaflet regions. In addition, sinotubular junction diameter, annular eccentricity index, oversizing as well as the combination of aortic angle and calcification in the combined non and left coronary leaflet region influence the occurrence of PVL. This framework not only advances our understanding of PVL mechanisms but also demonstrates the potential of ISCT to complement traditional clinical studies, enabling systematic exploration of complex factors influencing TAVR outcomes.</p></div>\",\"PeriodicalId\":489,\"journal\":{\"name\":\"Biomechanics and Modeling in Mechanobiology\",\"volume\":\"24 5\",\"pages\":\"1605 - 1618\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10237-025-01984-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics and Modeling in Mechanobiology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10237-025-01984-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-025-01984-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Impact of calcifications on paravalvular leakage by transcatheter aortic valve prostheses: findings from a new in silico clinical trial framework
Transcatheter aortic valve replacement (TAVR) has revolutionized the treatment of severe aortic stenosis, yet paravalvular leakage (PVL) remains a significant complication, associated with increased mortality. Clinical studies have identified correlations between PVL and both anatomical features and calcification patterns. Numerical simulations, particularly patient-specific models, offer valuable insights into PVL, but the limited scale of these studies hinders robust statistical analysis. This study introduces a novel in silico clinical trial (ISCT) framework to investigate the correlation between calcification severity, localization and PVL. For this purpose, a synthetic cohort of calcified aortic roots was generated. A conditional convolutional variational autoencoder was used to create calcification patterns for an existing virtual cohort of the aortic root. The workflow includes finite element analyses for pre-dilation and deployment simulations as well as computational fluid dynamic simulations for PVL calculations of 243 virtual TAVR patients. The results show that the absolute amount of calcification in the device landing zone has no significant influence, but its regional distribution does, especially in the combined leaflet regions. In addition, sinotubular junction diameter, annular eccentricity index, oversizing as well as the combination of aortic angle and calcification in the combined non and left coronary leaflet region influence the occurrence of PVL. This framework not only advances our understanding of PVL mechanisms but also demonstrates the potential of ISCT to complement traditional clinical studies, enabling systematic exploration of complex factors influencing TAVR outcomes.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.