{"title":"利用无金属原子转移自由基聚合制备苯乙烯-马来酸聚合物-刷接枝色谱固定相及其对磷脂的分离性能。","authors":"Ruilin Yang, Ping Wang, Xinhui Guan, Xiaofei Gu, Xiaoqiang Qiao","doi":"10.1007/s00216-025-06053-1","DOIUrl":null,"url":null,"abstract":"<p><p>Phospholipids have been considered biomarkers for diagnosing many diseases in recent years. However, the isolation and analysis of phospholipids still face many difficulties. Styrene-maleic acid (SMA) copolymer is currently considered suitable for the separation and analysis of phospholipids due to its ability to enhance and improve the solubility of phospholipid bilayers on cell membranes. In this work, metal-free atom transfer radical polymerization was first exploited to graft SMA copolymer onto the surface of silica gel. With glycerol monolaurate (GML) as the derivatization reagent, Sil-SMA-GML polymer-brush silica-based stationary phase was first developed. The chromatographic retention mechanism revealed that the Sil-SMA-GML column is of hydrophilic/reversed-phase mixed-mode retention modes. The chromatographic separation performance evaluation indicated that the Sil-SMA-GML column had excellent separation capabilities for both hydrophilic and hydrophobic compounds. The maximum column efficiency was up to 78,600 N/m. The Sil-SMA-GML column could also achieve simultaneous separation and analysis of different phospholipid classes and species as well as complex phospholipid extracts from human serum and exosomal phospholipid extracts, demonstrating the good potential of the developed stationary phase.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"5323-5333"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting metal-free atom transfer radical polymerization for fabrication of styrene-maleic acid polymer-brush grafting chromatographic stationary phase and its separation performances for phospholipids.\",\"authors\":\"Ruilin Yang, Ping Wang, Xinhui Guan, Xiaofei Gu, Xiaoqiang Qiao\",\"doi\":\"10.1007/s00216-025-06053-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phospholipids have been considered biomarkers for diagnosing many diseases in recent years. However, the isolation and analysis of phospholipids still face many difficulties. Styrene-maleic acid (SMA) copolymer is currently considered suitable for the separation and analysis of phospholipids due to its ability to enhance and improve the solubility of phospholipid bilayers on cell membranes. In this work, metal-free atom transfer radical polymerization was first exploited to graft SMA copolymer onto the surface of silica gel. With glycerol monolaurate (GML) as the derivatization reagent, Sil-SMA-GML polymer-brush silica-based stationary phase was first developed. The chromatographic retention mechanism revealed that the Sil-SMA-GML column is of hydrophilic/reversed-phase mixed-mode retention modes. The chromatographic separation performance evaluation indicated that the Sil-SMA-GML column had excellent separation capabilities for both hydrophilic and hydrophobic compounds. The maximum column efficiency was up to 78,600 N/m. The Sil-SMA-GML column could also achieve simultaneous separation and analysis of different phospholipid classes and species as well as complex phospholipid extracts from human serum and exosomal phospholipid extracts, demonstrating the good potential of the developed stationary phase.</p>\",\"PeriodicalId\":462,\"journal\":{\"name\":\"Analytical and Bioanalytical Chemistry\",\"volume\":\" \",\"pages\":\"5323-5333\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical and Bioanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00216-025-06053-1\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-06053-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Exploiting metal-free atom transfer radical polymerization for fabrication of styrene-maleic acid polymer-brush grafting chromatographic stationary phase and its separation performances for phospholipids.
Phospholipids have been considered biomarkers for diagnosing many diseases in recent years. However, the isolation and analysis of phospholipids still face many difficulties. Styrene-maleic acid (SMA) copolymer is currently considered suitable for the separation and analysis of phospholipids due to its ability to enhance and improve the solubility of phospholipid bilayers on cell membranes. In this work, metal-free atom transfer radical polymerization was first exploited to graft SMA copolymer onto the surface of silica gel. With glycerol monolaurate (GML) as the derivatization reagent, Sil-SMA-GML polymer-brush silica-based stationary phase was first developed. The chromatographic retention mechanism revealed that the Sil-SMA-GML column is of hydrophilic/reversed-phase mixed-mode retention modes. The chromatographic separation performance evaluation indicated that the Sil-SMA-GML column had excellent separation capabilities for both hydrophilic and hydrophobic compounds. The maximum column efficiency was up to 78,600 N/m. The Sil-SMA-GML column could also achieve simultaneous separation and analysis of different phospholipid classes and species as well as complex phospholipid extracts from human serum and exosomal phospholipid extracts, demonstrating the good potential of the developed stationary phase.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.