利用机器学习方法预测和解释单级部分硝化和厌氧氨氧化系统的脱氮性能和功能微生物丰度。

IF 9 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Bioresource Technology Pub Date : 2025-12-01 Epub Date: 2025-08-06 DOI:10.1016/j.biortech.2025.133119
Xiulin Mu, Fangxu Jia, Shengming Qiu, Yiran Li, Ning Mei, Xingcheng Zhao, Baohong Han, Xiangyu Han, Jingjing Zhang, Hong Yao
{"title":"利用机器学习方法预测和解释单级部分硝化和厌氧氨氧化系统的脱氮性能和功能微生物丰度。","authors":"Xiulin Mu, Fangxu Jia, Shengming Qiu, Yiran Li, Ning Mei, Xingcheng Zhao, Baohong Han, Xiangyu Han, Jingjing Zhang, Hong Yao","doi":"10.1016/j.biortech.2025.133119","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) was employed to simultaneously predict nitrogen removal rate (NRR) and functional microbial abundance of single-stage partial nitrification and anammox (PNA) system. Shapley additive explanations (SHAP) and causal inference were used to analyze the impact of key factors and their optimal ranges. Artificial neural network (ANN) and extreme gradient boosting (XGBoost) have strong predictive abilities for NRR (R<sup>2</sup> = 0.94) and functional microbial abundance (R<sup>2</sup> ≥ 0.57), respectively. pH and free ammonia (FA) are important factors affecting NRR. To inhibit nitrite oxidizing bacteria (NOB), it was recommended that FA be maintained above 5 mg/L, while O<sub>2</sub> be kept below 0.4 mg/L. Candidatus Brocadia-dominated sludge is recommended under low nitrogen (NH<sub>4</sub><sup>+</sup>-N<sub>inf</sub> < 200 mg/L) or O<sub>2</sub> fluctuation environments, while Candidatus Kuenenia-dominated sludge is recommended under high nitrogen (NH<sub>4</sub><sup>+</sup>-N<sub>inf</sub> > 400 mg/L), low temperature (20-30°C), or pH fluctuations (7.4-8.4). These models provide prospects and references for the application of PNA technology.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"133119"},"PeriodicalIF":9.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting and interpreting nitrogen removal performance and functional microbial abundance of single-stage partial nitrification and anammox system using machine learning methods.\",\"authors\":\"Xiulin Mu, Fangxu Jia, Shengming Qiu, Yiran Li, Ning Mei, Xingcheng Zhao, Baohong Han, Xiangyu Han, Jingjing Zhang, Hong Yao\",\"doi\":\"10.1016/j.biortech.2025.133119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Machine learning (ML) was employed to simultaneously predict nitrogen removal rate (NRR) and functional microbial abundance of single-stage partial nitrification and anammox (PNA) system. Shapley additive explanations (SHAP) and causal inference were used to analyze the impact of key factors and their optimal ranges. Artificial neural network (ANN) and extreme gradient boosting (XGBoost) have strong predictive abilities for NRR (R<sup>2</sup> = 0.94) and functional microbial abundance (R<sup>2</sup> ≥ 0.57), respectively. pH and free ammonia (FA) are important factors affecting NRR. To inhibit nitrite oxidizing bacteria (NOB), it was recommended that FA be maintained above 5 mg/L, while O<sub>2</sub> be kept below 0.4 mg/L. Candidatus Brocadia-dominated sludge is recommended under low nitrogen (NH<sub>4</sub><sup>+</sup>-N<sub>inf</sub> < 200 mg/L) or O<sub>2</sub> fluctuation environments, while Candidatus Kuenenia-dominated sludge is recommended under high nitrogen (NH<sub>4</sub><sup>+</sup>-N<sub>inf</sub> > 400 mg/L), low temperature (20-30°C), or pH fluctuations (7.4-8.4). These models provide prospects and references for the application of PNA technology.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\" \",\"pages\":\"133119\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2025.133119\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.133119","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

采用机器学习(ML)同时预测单级部分硝化厌氧氨氧化(PNA)系统的氮去除率(NRR)和功能微生物丰度。采用Shapley加性解释(SHAP)和因果推理分析了关键因素的影响及其最优范围。人工神经网络(ANN)和极端梯度增强(XGBoost)分别对NRR (R2 = 0.94)和功能微生物丰度(R2 ≥ 0.57)具有较强的预测能力。pH和游离氨(FA)是影响NRR的重要因素。为了抑制亚硝酸盐氧化菌(NOB),建议将FA控制在5 mg/L以上,O2控制在0.4 mg/L以下。推荐在低氮(NH4+-Ninf 2波动环境下使用Candidatus brocadia为主的污泥,在高氮(NH4+-Ninf > 400 mg/L)、低温(20-30℃)或pH波动(7.4-8.4)环境下使用Candidatus kuenenia为主的污泥。这些模型为PNA技术的应用提供了前景和参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting and interpreting nitrogen removal performance and functional microbial abundance of single-stage partial nitrification and anammox system using machine learning methods.

Machine learning (ML) was employed to simultaneously predict nitrogen removal rate (NRR) and functional microbial abundance of single-stage partial nitrification and anammox (PNA) system. Shapley additive explanations (SHAP) and causal inference were used to analyze the impact of key factors and their optimal ranges. Artificial neural network (ANN) and extreme gradient boosting (XGBoost) have strong predictive abilities for NRR (R2 = 0.94) and functional microbial abundance (R2 ≥ 0.57), respectively. pH and free ammonia (FA) are important factors affecting NRR. To inhibit nitrite oxidizing bacteria (NOB), it was recommended that FA be maintained above 5 mg/L, while O2 be kept below 0.4 mg/L. Candidatus Brocadia-dominated sludge is recommended under low nitrogen (NH4+-Ninf < 200 mg/L) or O2 fluctuation environments, while Candidatus Kuenenia-dominated sludge is recommended under high nitrogen (NH4+-Ninf > 400 mg/L), low temperature (20-30°C), or pH fluctuations (7.4-8.4). These models provide prospects and references for the application of PNA technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信