基于鱼鹰优化算法(OOA)的湖泊污染物预测研究。

IF 2.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Yinshan Yu, Xu Tang, Mingjian Ding, Guochen Tan, Jiawen Bi, Wenkai Huang and Yudong Yang
{"title":"基于鱼鹰优化算法(OOA)的湖泊污染物预测研究。","authors":"Yinshan Yu, Xu Tang, Mingjian Ding, Guochen Tan, Jiawen Bi, Wenkai Huang and Yudong Yang","doi":"10.1039/D5AY01027F","DOIUrl":null,"url":null,"abstract":"<p >To address the complexities and real-time requirements of water quality parameter measurement, this study proposes an Osprey Optimization Algorithm (OOA)-enhanced method for predicting lake pollutants. Initially, six water quality parameters—including COD, total phosphorus, and total nitrogen – are measured in lake samples using a spectrophotometry-based multi-parameter water quality analyzer. Given the complex nonlinear relationships between these parameters and pollutant concentrations, the Gaussian Process Regression (GPR) model is employed to predict concentrations of three target pollutants. To mitigate suboptimal prediction accuracy observed in the initial GPR model, the Osprey Optimization Algorithm (OOA) is introduced to optimize and refine its hyperparameters, thereby enhancing the model's adaptability to dataset characteristics. Comparative analysis is conducted between baseline and optimized models. Experimental results demonstrate that the OOA-enhanced model achieved correlation coefficients (<em>R</em><small><sup>2</sup></small>) exceeding 0.9 for both training and testing sets, with MAE, MAPE, and RMSE metrics approaching zero. This research provides an effective methodological refinement for lake pollutant forecasting.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" 33","pages":" 6630-6636"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on lake pollutant prediction based on the osprey optimization algorithm (OOA)\",\"authors\":\"Yinshan Yu, Xu Tang, Mingjian Ding, Guochen Tan, Jiawen Bi, Wenkai Huang and Yudong Yang\",\"doi\":\"10.1039/D5AY01027F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >To address the complexities and real-time requirements of water quality parameter measurement, this study proposes an Osprey Optimization Algorithm (OOA)-enhanced method for predicting lake pollutants. Initially, six water quality parameters—including COD, total phosphorus, and total nitrogen – are measured in lake samples using a spectrophotometry-based multi-parameter water quality analyzer. Given the complex nonlinear relationships between these parameters and pollutant concentrations, the Gaussian Process Regression (GPR) model is employed to predict concentrations of three target pollutants. To mitigate suboptimal prediction accuracy observed in the initial GPR model, the Osprey Optimization Algorithm (OOA) is introduced to optimize and refine its hyperparameters, thereby enhancing the model's adaptability to dataset characteristics. Comparative analysis is conducted between baseline and optimized models. Experimental results demonstrate that the OOA-enhanced model achieved correlation coefficients (<em>R</em><small><sup>2</sup></small>) exceeding 0.9 for both training and testing sets, with MAE, MAPE, and RMSE metrics approaching zero. This research provides an effective methodological refinement for lake pollutant forecasting.</p>\",\"PeriodicalId\":64,\"journal\":{\"name\":\"Analytical Methods\",\"volume\":\" 33\",\"pages\":\" 6630-6636\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Methods\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ay/d5ay01027f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ay/d5ay01027f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

针对水质参数测量的复杂性和实时性要求,本研究提出了一种基于鱼鹰优化算法(Osprey Optimization Algorithm, OOA)的湖泊污染物预测方法。最初,使用基于分光光度法的多参数水质分析仪测量湖泊样品中的六个水质参数,包括COD,总磷和总氮。考虑到这些参数与污染物浓度之间存在复杂的非线性关系,采用高斯过程回归(GPR)模型对三种目标污染物的浓度进行预测。为了缓解初始GPR模型存在的次优预测精度,引入鱼鹰优化算法(Osprey Optimization Algorithm, OOA)对其超参数进行优化和细化,从而增强模型对数据集特征的自适应能力。对基线模型和优化模型进行了对比分析。实验结果表明,ooa增强模型在训练集和测试集上的相关系数(R2)均超过0.9,MAE、MAPE和RMSE指标接近于零。本研究为湖泊污染物预测提供了有效的方法改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Research on lake pollutant prediction based on the osprey optimization algorithm (OOA)

Research on lake pollutant prediction based on the osprey optimization algorithm (OOA)

To address the complexities and real-time requirements of water quality parameter measurement, this study proposes an Osprey Optimization Algorithm (OOA)-enhanced method for predicting lake pollutants. Initially, six water quality parameters—including COD, total phosphorus, and total nitrogen – are measured in lake samples using a spectrophotometry-based multi-parameter water quality analyzer. Given the complex nonlinear relationships between these parameters and pollutant concentrations, the Gaussian Process Regression (GPR) model is employed to predict concentrations of three target pollutants. To mitigate suboptimal prediction accuracy observed in the initial GPR model, the Osprey Optimization Algorithm (OOA) is introduced to optimize and refine its hyperparameters, thereby enhancing the model's adaptability to dataset characteristics. Comparative analysis is conducted between baseline and optimized models. Experimental results demonstrate that the OOA-enhanced model achieved correlation coefficients (R2) exceeding 0.9 for both training and testing sets, with MAE, MAPE, and RMSE metrics approaching zero. This research provides an effective methodological refinement for lake pollutant forecasting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信